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SECOND ORDER FAMILIES OF SPECIAL
LAGRANGIAN SUBMANIFOLDS IN C*

MARIANTY IONEL

Abstract

This paper extends to dimension 4 the results in the article “Second order
families of special Lagrangian 3-folds” by Robert Bryant. We consider the
problem of classifying the special Lagrangian 4-folds in C* whose funda-
mental cubic at each point has a nontrivial stabilizer in SO(4). Points on
special Lagrangian 4-folds where the SO(4)-stabilizer is nontrivial are the
analogs of the umbilical points in the classical theory of surfaces. In proving
existence for the families of special Lagrangian 4-folds, we used the method
of exterior differential systems in Cartan-K&hler theory. This method is
guaranteed to tell us whether there are any families of special Lagrangian
submanifolds with a certain stabilizer type, but does not give us an explicit
description of the submanifolds. To derive an explicit description, we looked
at foliations by submanifolds and at other geometric particularities. In this
manner, we settled many of the cases and described the families of special
Lagrangian submanifolds in an explicit way.

1. Introduction
The complex space C™ is endowed with a Kéhler form
w= %(dzl/\d21+szAd22+-~+dzm/\dzm)
and a volume form
Q=dzi Ndzag N+ Ndzp,

where (21, 29,...,2ny) are the coordinates on C™. A special Lagrangian
submanifold in C™ is an m-dimensional real submanifold on which the
forms w and Im € restrict to 0.
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The study of special Lagrangian (SL) submanifolds started with Har-
vey and Lawson in their paper [12] on calibrated geometries. They con-
structed many interesting examples of SL. m-folds in C™ and proved
local existence theorems. Since then, many other examples have been
constructed using a variety of techniques. To give some examples, Do-
minic Joyce used the method of ruled submanifolds, integrable systems
and evolution of quadrics in [8], [9], [10] to construct explicit examples
of special Lagrangian m-folds in C™, Mark Haskins exhibited examples
of special Lagrangian cones in C3 [4], Richard Schoen and Jon Wolfson
used the variational approach for some of their constructions in Calabi-
Yau manifolds in [15], etc.

Special Lagrangian geometry received reinforced attention in 1996
when Strominger, Yau and Zaslow formulated what is today known as
the SYZ conjecture [17]. This conjecture reveals the role of the special
Lagrangian geometry in mirror symmetry, a mysterious relationship be-
tween pairs of Calabi-Yau 3-folds, coming from string theory. In this
larger context, a lot of research is going on nowadays to find examples
of special Lagrangian submanifolds. This would help in understanding
what kind of singularities a special Lagrangian submanifold in a Calabi-
Yau can have, classifying them and maybe ultimately resolving the SYZ
conjecture.

While, from the string theory point of view, the most interesting
case to study is the special Lagrangian 3-folds of a Calabi-Yau 3-fold,
higher dimensional cases are also important for the understanding of
the general theory of SL submanifolds in Calabi-Yau m-folds.

The idea in this research, initiated by Robert Bryant in his paper
[1], is to classify families of SL submanifolds that are characterized by
invariant, geometric conditions. When the ambient space is flat, the
second fundamental form is the lowest order invariant of a SL. submani-
fold, so we would like to study the second order families of SL m-folds in
C™, that is the families of SL m-folds in C™ whose second fundamental
form satisfies a set of pointwise conditions.

The second fundamental form of a special Lagrangian submanifold
in C™ has a natural interpretation as a traceless cubic form on the
submanifold, called the fundamental cubic. The stabilizer at a generic
point of the fundamental cubic of a generic SL m-fold is trivial. For
comparison, in the case of a hypersurface in R™*!, the stabilizer of the
second fundamental form in SO(m) is always nontrivial and is larger
than the minimum possible stabilizer exactly at the umbilical points of
the hypersurface. For this reason, the points on SL m-folds where the
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SO(m)-stabilizer is nontrivial are the analogs of the umbilical points in
the classical theory of surfaces.

In his article [1], Robert Bryant considered the ‘umbilical’ case and
completely classified the SL submanifolds of C? whose fundamental cu-
bic has nontrivial SO(3)-stabilizer at a generic point. He found that the
only SL 3-folds whose fundamental cubic has a nontrivial stabilizer at
a generic point are the 3-planes, with stabilizer SO(3), the Harvey and
Lawson examples, with stabilizer SO(2), the austere SL 3-folds, with
stabilizer S3, the asymptotically conical SL 3-folds, with stabilizer Zs
and the Lawlor-Harvey-Joyce examples, with stabilizer Zs.

This present work extends these results to dimension m = 4, namely
tries to classify the special Lagrangian 4-folds in C* whose fundamental
cubic at a generic point has nontrivial SO(4)-stabilizer.

The possible stabilizer of a traceless cubic can be a continuous,
meaning a positive dimensional, or a discrete subgroup of SO(4). In
Chapter 3.2, we consider the case when the stabilizer is continuous. It
turns out that there are four cases when there are nontrivial special
Lagrangian 4-folds with continuous stabilizer type:

(a) When the fundamental cubic has stabilizer SO(3) we obtain the
Harvey and Lawson examples which appeared also in dimension
3: Lo = {(s+it)u|u e S C R Im(s+it)! = c}, where c is any
real constant.

(b) When the stabilizer is SO(2) x S3, we obtain special Lagrangian
submanifolds as products of the form L = R? x ¥, where ¥ C C?
is a complex curve.

(c) When the stabilizer is SO(2), we obtain the SO(3)-invariant spe-
cial Lagrangian 4-folds.

(d) When the stabilizer is an O(2), we obtain a two parameter family
of solutions which we have not been able to integrate completely
yet.

In Chapter 3.3, we consider the case when the stabilizer of the fun-
damental cubic is a discrete subgroup of SO(4). In Chapter 3.3.1, we
classify the SL 4-folds with polyhedral stabilizer type. It turns out that
the polyhedral subgroups of SO(4) that stabilize a traceless cubic in
4 variables are the tetrahedral subgroup T, the irreducibly acting oc-
tahedral subgroup QT and the irreducibly acting icosahedral subgroup
IT. We show that the special Lagrangian 4-folds whose stabilizer of
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its fundamental cubic is isomorphic to the tetrahedral subgroup are the
Harvey-Lawson examples invariant under a torus action, the ones whose
stabilizer at a generic point is isomorphic to Q" are the cones on flat
3-dimensional tori in the 7-sphere and that there are no nontrivial spe-
cial Lagrangian 4-folds whose stabilizer of its fundamental cubic at a
generic point is isomorphic to IT.

Using the classification of the discrete subgroups of SO(4) from
Chapter 3.1, it remains to analyze the cases when the stabilizer of the
traceless cubic is a cyclic or a dihedral subgroup of SO(4). We show
that the discrete stabilizer can only have elements of order less or equal
to 6. Further, we show that if the stabilizer is discrete and contains an
element of order 6, 5 or 4, then there are no special Lagrangian 4-folds
in C* with a cyclic or dihedral stabilizer type.

When the stabilizer contains an element of order 3, there are two
inequivalent orbits in the space of fixed traceless cubics that have to
be considered. In the first case of discrete stabilizer type at least a Zs,
the special Lagrangian 4-folds whose cubic stabilizer at a generic point
is isomorphic to Ds3, the dihedral group in 3 elements, turn out to be
asymptotically conical. The SL 4-folds with stabilizer type an order 18
normal subgroup of D3 x D3 turn out to be products of holomorphic
curves. When the stabilizer type is exactly a Zs, we were able to show
that there is an infinite parameter family of solutions that depends on
4 functions of 1 variable, foliated by minimal Legendrian surfaces and
by holomorphic curves, but could not finalize the analysis and describe
this family completely. In the second case of discrete stabilizer type at
least Z3, we found a large family of SL 4-folds defined by holomorphic
differential equations, a family that did not appear in dimension 3.

The general case of discrete stabilizer type at least a Zo is the most
complicated case, since the general traceless cubic has a large number
of parameters, and was not considered in this work.

Acknowledgements. 1 would like to thank my advisor Prof.
Robert Bryant for introducing me to the subject, for his help and sup-
port and for the innumerable hours of discussions that led to this work.

2. Special Lagrangian geometry in Calabi-Yau manifolds

2.1 Special Lagrangian submanifolds

We begin with the definition of a Calabi-Yau manifold.
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Definition 2.1. A Calabi-Yau m-fold (M, J, g) is a compact, com-
plex m-dimensional manifold (M, J) with trivial canonical bundle Ky
and Ricci-flat Kéhler metric g.

Because the canonical bundle K is trivial, there is a nonzero holo-
morphic section €2 of Kj;. Since the metric g is Ricci-flat, 2 is a parallel
tensor with respect to the Levi-Civita connection V9 [6]. By rescaling
Q, we can take it to be the holomorphic (m,0)-form that satisfies:

w™ mm-1) (i \"
(2.1) i (—1) =2 <2> QANQ,
where w is the Kahler form of g. The form 2 is called the holomorphic
volume form of the Calabi-Yau manifold M.

The special Lagrangian submanifolds were introduced by Harvey
and Lawson in their paper [12] using calibrations. They are defined in
the general setting of a Calabi-Yau manifold and are a special class of
minimal submanifolds.

Definition 2.2. Let (M, J,g,Q) be a Calabi-Yau m-fold and L C
M a real m-dimensional submanifold of M. Then L is called a special
Lagrangian submanifold of M if w |;=0 and ImQ [,= 0.

More generally, L is said to be a special Lagrangian submanifold
with phase ¢ if w [= 0 and Im(e?Q) |L= 0.

As an example, we can see that R™ C C™ is a special Lagrangian
subspace. C™ is endowed with the standard Calabi-Yau structure de-
fined by

(2.2) go=dz10dz1 + - +dzpm odzy,
(2.3) wo = %(dzl AdZy+ -+ dem A dZ)
(2.4) Qo =dz1 A+ Ndzp,

where gg is the Kéhler metric on C™, wg the Kahler form and €y the
holomorphic volume form on C™. An m-dimensional submanifold L of
M is called Lagrangian if w [, = 0. So, the special Lagrangian subman-
ifolds of M are the Lagrangian submanifolds with the extra condition
Im 2 |,= 0, which is exactly the reason for their name.

There are some important results on SL submanifolds which we will
briefly recall here.
a. Deformations. R. McLean [13] studied the moduli space of com-
pact special Lagrangian deformations and showed that it has the fol-
lowing description:
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Theorem 2.3 (McLean). Let (M, J,g,92) be a Calabi-Yau m-fold
and L C M a m-dimensional compact SL submanifold. Then the moduli
space M, of special Lagrangian deformations of L is a smooth manifold
of dimension b'(L), the first Betti number.

b. Local existence. Harvey and Lawson [12] proved local existence
only for SL-submanifolds in C™, but their result extends to show that if
(M, J, g,Q) is a Calabi-Yau m-fold and N C M a real analytic subman-
ifold of dimension m — 1 such that i*(w) = 0, then N lies in a unique
irreducible SL submanifold L C M. Here i: N — M is the inclusion
map.

This result shows that there are many special Lagrangian submani-
folds locally.

c. Minimizing property. A closed special Lagrangian submanifold
is volume-minimizing in its homology class and therefore it is a mini-
mal submanifold. We remark that a minimal submanifold, i.e., a sub-
manifold with constant mean curvature 0, is not necessarily volume-
minimizing amongst homologous submanifolds. For example the equa-
tor of a 2-dimensional sphere is minimal, but does not minimize length
amongst lines of latitude.

2.2 Structure equations

a. The coframe bundle. Let (M, J, g,Q) be a Calabi-Yau m-fold and
let C™ =2 R?™ have complex coordinates (21, 22,...,2mn) and complex
structure I. The standard Calabi-Yau structure on C™ is given by the
relations (2.2), (2.3) and (2.4). Let m: P — M denote the bundle of
C™-valued Calabi-Yau coframes, i.e., an element of P, = 77 1(z) is a
complex linear vector space isomorphism w: T.M — C™ that satisfies
wy = u*(wp) and Q, = u*(2p). Then w: P — M is a principal right
SU(m)-bundle over M and the right action is given by R, (u) =a lou
for a € SU(m). P, is the fiber at x of the Calabi-Yau coframe bundle
P.

The canonical form ¢ is defined on the Calabi-Yau coframe bundle
P by

&w=uo(dn)y: T,P —C™ forueP

where (dm)y: TyP — Tr@yM is the differential of 7 at u. The 1-form
¢ is C™-valued and we denote its components by &;, ¢ = 1...m. Then,
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on the bundle P the following equations hold:

(2.5) (w) = %(fl AN 4+ & AE,) and T5(Q) =& A A

By regarding the forms on M embedded into the forms on P via the
pullback, we can ignore 7* in the above equations.

We define also the functions e;: P — TM such that &(e;) = 6;;.
So, if v € Ty, P then: (dm),(v) = e;j(u)é;i(v). Cartan’s first structure
equation:

(2.6) dfl = —’(/)Zj A §j

defines (t;7) = ¥, the su(m)-valued 1-form on P called the connection
form. In the flat case M = C", Cartan’s second structure equation
satisfied by the connection form 1 is:

(2.7) dip = —p A .

b. Special Lagrangian submanifolds in C™. In this paper we are
interested in special Lagrangian submanifolds of C™, therefore we are
considering only the flat case from now on. When M = C" with the
standard Calabi-Yau structure (C™,J, g, ), we denote the Calabi-
Yau coframe bundle by x: P — C™ and regard the functions e; as
vector-valued functions on P = C™ x SU(m). Then the relations:

(2.8) dx = e
give the 1-forms {¢;, wij} which form a basis for the space of 1-forms on
the frame bundle P.

To study the SL submanifolds of C™, we separate the two structure

equations (2.6) and (2.7) into real and imaginary parts. We set & =
w; +1in; and wij = a;j +10;j. The first structure equation (2.6) becomes

(2.10) dw; = —ij Nwj + ﬁij A nj and dn; = —ﬁij ANwj — a5 Anj

where we used Einstein’s convention to sum over repeated indices. Since
1 is skew-hermitian with trace 0, it follows that o = (o) is skew-
symmetric and 5 = (f;;) is symmetric with vanishing trace.

When split into its real and imaginary parts, the second structure
equation (2.7) becomes:

(2.11) dogj = =g A agj + Bik A Brj
(2.12) dBij = —Bix N g — it A Brj

217
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Let L C M be a special Lagrangian submanifold. We are going to
consider the bundle P;, of L-adapted coframes over L. This is defined
as follows: Let x € L. A Calabi-Yau coframe at z, u: T,M — C™ is
said to be L-adapted if u(T,L) = R™ C C™ and u: T,,L — R™ preserves
orientation. The space of L-adapted coframes forms a principal right
SO(m)-subbundle P;, C 7=(L) C P over L. Now, because u takes a
tangent plane to L in M into a real one, £ is R™-valued on P, and so
n; = 0 holds on Pp. By the structure equation (2.10), we get that:

dw; = —Qjj N\ Wj and ,Bij Nwj = 0 on Py

Since w1, . ..,wp, are linearly independent forms and 3;; A w; = 0, Car-
tan’s Lemma implies that (;; = hjjrwi, where hyjp = hgj. Since [3;;
is symmetric, hjjr = hj;; also holds and so h;j, are fully symmetric
functions on the bundle Py

c. The fundamental cubic. Let L C M = C™ be a SL submanifold
and let v — L be the normal bundle of L in M, such that TM |.=
TL @ v. The second fundamental form of L is a quadratic form with
values in the normal bundle v and it can be interpreted as a traceless
symmetric cubic form in the following way: The second fundamental
form B of L in M can be written as B = Je; ® h;jpwjwi, where hjp
are the fully symmetric functions determined by (;; as described above.
All the information of the second fundamental form is contained in the
symmetric cubic form C' = h;jpw;w;jwy which is called the fundamental
cubic of the special Lagrangian submanifold L. We note that this cubic
is traceless with respect to the induced metric on L, g = w% +o w2,
since:

tryC = hypwi = Bi; = 0.

The following result tells us that the necessary and sufficient con-
ditions for the existence of a special Lagrangian in C™ with a given
metric and a given fundamental cubic are the Gauss and Codazzi-type
equations (2.11) and (2.12).

Let (L,g) € C™ be a simply connected Riemannian manifold of
dimension m and C' a symmetric cubic which is traceless with respect to
g. Choose a g-orthonormal coframing w = (w;) on an open neighborhood

U C L and define n; = 0. Now, let a;; = —a;; be the unique 1-forms
on U s.t. dw; = —a;j Awj. Write the cubic as C' = h;jpw;wjwy, and set
Bij = hijrwr -

Theorem 2.4 (see [1]). Suppose that the forms B;; determined by
C together with the forms cy; determined by (w;) satisfy the Gauss and
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Codazzi equations (2.11), (2.12). Then there is an isometric immersion
of (L, g) into C™ as a special Lagrangian submanifold inducing C as its
fundamental cubic. Moreover, this isometric immersion is unique up to
rigid motions.

3. Second order families

3.1 Discrete subgroups of SO(4)

As we have seen in Section 2.2.c, the second fundamental form C of a
special Lagrangian submanifold L C C™ can be regarded as a symmet-
ric cubic form in n variables zi,xo,...,z,, with vanishing trace with
respect to the induced metric g. It is easy to see that the symmetric
cubic is traceless if and only if it is a harmonic cubic, i.e., AC = 0,
where A =377 8‘9722. Therefore, the fundamental cubic of a special La-
grangian submanifold in C™ belongs to the space H3z(R?*) of harmonic
cubics in 4 variables. This space is an irreducible SO(4)-module of di-
mension 16 and the action is given by

(3.13) (A-P)x = P(zA)
where
A = (a;;) €S0(4), P(x) € H3(R?Y), 2z = (x1,29,73,74) €R?

and
(zA)i = zja

is given by usual matrix multiplication.

We want to study the families of special Lagrangian 4-folds in C*
whose fundamental cubic at a generic point has nontrivial SO(4)-stab-
ilizer. The stabilizer G of a polynomial P(z) € Hz(R*) is defined as

G ={A € SO4)| (A- P)(z) = P(z), for any = € R*}.

The stabilizer can be either a positive dimensional subgroup of SO(4)
or else a discrete subgroup of SO(4). In our analysis, we need to know
which are the discrete subgroups of SO(4) that can stabilize a harmonic
cubic in 4 variables.

We start by listing the discrete subgroups of SO(4) not containing
the central rotation —Iy4, since a subgroup of SO(4) that contains —I4
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cannot stabilize any nontrivial cubic polynomial. For a complete proof
of the classification of the discrete subgroups of SO(4) the reader might
want to consult [11].

In the study of the discrete subgroups of SO(4), we are going to use
the quaternionic field H. Let E4 be the Euclidean 4-dimensional space
and let {1,1,j,k} be an orthonormal basis. We define a multiplication
of elements of E4 by the well-known rules: i = j> = k? = -1, ij =
k, jk = i, ki = j. The elements of E; form the non-commutative
field of quaternions H. We will denote a quaternion by the ordered set
(w,z,y,2) or by w+xi+yj+ zk. For a quaternion ¢ = w+zi+yj+ zk
we define the conjugate § = w — xi — yj — zk and the modulus of ¢ as
lg| = (qq)%. If |g| = 1, we call ¢ a unit quaternion and U = {q € H |
|g| = 1} is a multiplicative group called the group of unit quaternions.

For any ¢ € E4, we define the right multiplication map pq: Eq4 — Ey4
by pq(x) = xq and the left multiplication map A\y: E4 — Eq by A\y(z) =
gz. If u € U, both p, and A, are seen to be in SO(4) and they are called
the right rotation and the left rotation, respectively. The right rotations
{pu : uw € U} form a group Uy and the left rotations {\, : u € U} form
a group U_ and both Uy and U_ are subgroups of SO(4), isomorphic to
the unit quaternions group U. These are different subgroups of SO(4)
and we notice that Uy NU_ = {£1}.

Consider now the homomorphism ®: U x U — SO(4) with

D (uy, u2)(z) = wzty = Auy Pus (2).

It is well-known that ® is surjective and its kernel is the 2-element group
{(1,1),(=1,=1)} = Zs. So, U x U/{(1,1),(—1,—1)} = SO(4) and to study
the subgroups of SO(4) we would be interested in the subgroups of the
unit quaternions group U. We also define the surjective 2:1 homomor-
phism ¥: U — SO(3) by ¥(u)(x) = uxu, whose kernel is {£1}.

It is well-known [14] that the discrete subgroups of SO(3) are the
cyclic groups, the dihedral groups and the pure symmetry groups of
the platonic solids which are the tetrahedral, the octahedral and the
icosahedral groups. The tetrahedral group 7 is the group of rotational
symmetries of a tetrahedron, it has order 12 and it is isomorphic to Ay,
the group of even permutations of 4 elements. The octahedral group O
is the group of rotational symmetries of an octahedral (or a cube) and
it is a group of order 24, isomorphic to Sy, the permutation group of 4
elements. The icosahedral group Z is the group of rotational symmetries
of a icosahedral (or a dodecahedral) and it has order 60, isomorphic to
As.
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Using the homomorphism W, it is not hard to determine the discrete
subgroups of the group of unit quaternions U. A complete description
of how this is done can be found in [11].

Proposition 3.1. FEvery finite subgroup of the unit quaternionic
group U is conjugate to one of the following groups:

2hm

Cn:{coszkm—i—ksin ,k:O,...,n—l}
n

n
D, =C5,UiCs,

k
2 /1 1, 1, 1
T=0U (-+-i+-j+-k] D

k:0<2+21+2']+2> 2

1
O=TU—=(1+1i)T
)

k
4 1 T 1
I=U (—+2i+=j) T
ka<2r+21+2J>

where T = —‘/5;1.

The binary polyhedral subgroups T, O and I are called, respectively,
the binary tetrahedral, octahedral and icosahedral subgroups of U and
are twice the order of the corresponding polyhedral subgroup of SO(3).

Now, to find the discrete subgroups of SO(4) we use the 2 : 1 homo-
morphism:

®: U xU — SO(4)
O(l,r)(x) = loF

with Ker ® = {(1,1), (—1,—1)}. We denote by [l,r] = {(l,r), (—l,—7)}.
Then we have an isomorphism ¢: U x U/z, = SO(4) with ¢([l,r]) =
{z — lz7}.

If o € SO(4) is a discrete subgroup, then

L={leUlr —lar€oc}and R={reUlz — laF € o}

are subgroups of U. We notice that 0 C ®(L x R) but the equality
might not hold since it might be possible to find a pair (I,r) € L x R
such that © — lx7 € 0. We define the subgroups

L'={leLllx—lzreo}={leL|(l1) e}
R ={reRlz—areco}={reR|1,r) €c}
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and there is an isomorphism between the quotient groups L/, and R/ g/
given by ¢(IL") = rR' such that (I,r) € o. The subgroup ®(L’ x R’)
is normal in o and o/¢xry = L/ and R/p. The subgroup o
depends on the isomorphism v between the quotient groups L/, and
R/ g, different isomorphism possibly yielding non-conjugate subgroups
in SO(4). We will denote the group o by (L/r/; R/ Rrr)y-

For example, Cy, is a normal subgroup of Cy, and the quotient
group Cmyr/c,, = Zr. The elements of Cyy/c,, are the cosets p'Chn,

21

. _ 2T . .
i = 0..r — 1, where 12) = cos - + ksin 27 is a generator of Cpy.
s

If q = COSZ—Z + ksin 27 is a generator of Cyy, we have the isomor-

phism )5 Cmr/Cm - Cnr/Cn defined by %(Picm) = QSiCnai =
0.r — 1. For each s such that (s,r) = 1 and s < 3r, we get an
isomorphism 1), that gives distinct subgroups (Cmr/Cpm; Cnr/Cn)vs.-
The subgroups of SO(4) of this form that do not contain the central
rotation are seen to be (Comr/Cpm; Canr/Cy )y, of order mnr with
m and n odd. Also, extending the isomorphism between Coamr/c,,
and Capnr/c, to one between Dy /Cm = (Comr @ iC2myr)/Cm and
Dyr/Cn = (Canr @ iCanr)/Cn by ¥s(ip’Cm) = iq¥Cp,j = 0.7 — 1,
we obtain the subgroup (Dmr/Cm;Dnr/Cn)y, of order 2mnr, where
m and n are odd.

Another subgroup of SO(4), of order 12, that does not contain the
central rotation is

T = (T/Cl,T/Cl) = (T,T) = {[t,t] | t e T}

In the case case when L = R = O and L' = R’ = C;, we obtain two
non-conjugate groups, depending on the automorphism of O considered.
If we take ¥: O — O to be the identical automorphism we obtain the
subgroup O = (0;0) = {[o,0],0 € O} of order 24. If we consider
the automorphism ¢: O = T & (1 + %i)T — O with ¢¥(o) = o, if

o€ T and ¢(0) = —o, if 0 € %(1 +1)T, we obtain a different subgroup

Ot ={]o,0],0 € T and [0, —0],0 € %(1 +1)T}, of order 24.

In the case when L = R =1 and L' = R’ = C;, we obtain again
two non-conjugate subgroups of SO(4) which do not contain the central
rotation. If we take ¢: I — I to be the identical automorphism, we
obtain the subgroup I = (I;I) = {[I,{],! € I}, of order 60. But we
notice that all the elements of I are in the field of rational numbers over
V5 and the change of sign of v/5 interchanges +7 with 7. If p € T'is

a quaternion we denote by p* its image under this automorphism. Then

4
I is interchanged with a group I = kuo(g + %i + 3j)*T and the two



SPECIAL LAGRANGIAN SUBMANIFOLDS

groups have in common T. If we now consider the isomorphism : IT —
I, ¢)(p") = p then we obtain a different subgroup I = {[r*,r|,r € I},
of order 60. This group leaves no axis fixed and it can be shown to be
the rotational symmetry group of a regular simplex in E4, with vertices

at 1 and $(—1 =+ v/5i + V/5j = V/5k).
To conclude, we have the following:

Proposition 3.2. The discrete subgroups of SO(4) that do not con-
tain the central symmetry —I4 are the following:

1. (Comr/Cm; Canr/Cy )., Of order mnr, where m, n odd;
2. (Dmr/Cm;Dnr/Cn)y,, of order 2mnr, where m, n odd,
T =(T/Cq1;T/Cq1) ={[t,t] | t € T}, of order 12;

0= (0/C1;0/C1) ={]o,0] | 0 € O}, of order 24;

Ot = (0/C1;0/Cq) = {[o,0] | 0 € T and [0,—0],0 € %(1 +
i)T}, of order 24;

6. I=(I/Cq1;1/C1) ={[l,1] |l €1}, of order 60;
7. I = (IT/Cq;I|Cq) = {[rT, 7] | r € I}, of order 60.

For complete proof of this proposition, the reader should consult [11]
and [3].

AR

3.2 Continuous stabilizer type

Any maximal torus in SO(4) is conjugate to the group:

161 0
{(eo 6202), 0.0, [0,27T)}.

We are looking to determine the orbits of the action (3.13) that have
nontrivial stabilizer under the action of SO(4). In what follows, a pos-
itive dimensional stabilizer will be called a continuous stabilizer. The
special Lagrangian 4-folds whose fundamental cubic at each point has
stabilizer G, a subgroup of SO(4), will be said to have stabilizer type
G. If the stabilizer G is a continuous or discrete subgroup of SO(4), we
will say that the special Lagrangian 4-fold has continuous or discrete
stabilizer type, respectively.

First, we are going to classify the harmonic cubic polynomials in
4 variables {x1,x2, x3, x4} whose stabilizer is a continuous subgroup of

SO(4).

223
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Proposition 3.3.  The SO(4)-stabilizer of h € H3(R*) is a con-
tinuous subgroup of SO(4) if and only if h lies on the SO(4)-orbit of
exactly one of the following polynomials:

1. 0 € H3(R%), whose stabilizer is SO(4);

2. rwy(2? — 23 — 23 — x3) for some r > 0, whose stabilizer is the

subgroup SO(3), consisting of rotations in the 3-space (x2, x3,x4);

3. r[(a? — x3)xs + 2m1w224], for some r > 0, whose stabilizer is the
subgroup O(2) generated by rotations by an arbitrary angle in the
(z1,x2)-plane and twice that angle in the (xs3,x4)-plane and the

1000
element (8 oY >;

00 0-1

4. r(z3 — 3z123) for some r > 0, whose stabilizer is the subgroup
SO(2) x S3, where S3 is the symmetric group on 3 elements gen-

erated by the rtl)t(étioon é)y an angle of 2?” in the (x1,x2)- plane and

the element <8 _01 _01 8), and SO(2) is the group of rotations in
00 01

the (3, x4)-plane;

5. r(x3 —3z123) + vz (23 + 23 — 223 — 229) for some v > 0 satisfying
r # 3v whose stabilizer is the O(2)-subgroup generated by rotations
1000
in the (x3,x4)-plane and the element (8 51 0 8 >;
000-1
6. r(x3 —37123) + s(3x3we — 23) + 3vxy (22 + 23 — 223 — 223) for some
s >0 and v > 0 whose stabilizer is the SO(2)-subgroup generated
by rotations in the (x3,z4)-plane.

Remark (special values). The case r = 3v of case 5 above reduces
to case 2, when the stabilizer is SO(3).

Proof. Suppose h € H3(R?*) has a nontrivial stabilizer G C SO(4).
If G = SO(4), then h = 0 since H3(R?) is an irreducible representation
of SO(4). We suppose from now on that h # 0. Being a stabilizer, G
is a closed subgroup of SO(4), therefore it is compact and has a finite
number of components.

We suppose G is not discrete. Then, its identity component H
is a closed connected subgroup of SO(4). The algebra h of H is a
subalgebra of so(4). Using the 2:1 homomorphism ®: U x U — SO(4),

~

O (uy,uz)(r) = upzts from Section 3.1, it is easy to see that so(4) =
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50(3)+ @ s0(3)_, where so(3)+ and so(3)_ are two different copies of
s0(3) with intersection the 0 vector. Since dimso(4) = 6, there are the
following possibilities for the subalgebra b:

1) dimbh = 5. This is not possible for the following reason: h N
50(3)4 C s0(3)4+ is a subalgebra of dimension at least 2 and so(3)4 has
no subalgebras of dimension 2. Therefore, h N so(3); = so(3); which
implies that b D s0(3). Similarly, it can be shown that b 2 so(3)_ and
it follows from here that h = so(4), which gives a contradiction.

2) dimbh = 4. Then hy = h Nso(3)+ is an ideal of dimension at
least 1 in s0(3)4 and h— = hNso(3)— is an ideal of dimension at least
1 in so(3)_. Consider the projections m4: h — s0(3)+. Since Ker
T+ = bz, it follows that Ker 7+ can have dimension 1 or 3. If Ker 7_
has dimension 1, 7_ is onto and Ker 7 has dimension 3. In this case,
it follows that b = so(2)+ and we obtain that h = so(2)4 & so(3)_. If
the dimension of Ker 7_ is 3, then the dimension of Ker 74 is 1 and we
obtain h = s0(3)+ ®so0(2)_. But so(3)4+ acts like the group SU(2) on the
space of complexified harmonic cubics in four variables {z1, 29, Z1, Z2},
where z1 = x1+1iz9, 20 = x3+1ix4 and calculations show that this action
does not preserve any nontrivial element. Therefore, in this case H does
not preserve any nontrivial harmonic cubic.

3) dimbh = 3. In this case, one can show that, up to conjugacy, the
only possibilities for h are so(3)4, so(3)_ and diag(so(3)+ @ s0(3)-).
But, as discussed in 2) above, s0(3)1+ does not preserve any cubic poly-
nomial in 4 variables and consequently we can discard these cases.

We study now the case

h = diag(so(3)+ ®s0(3)-) = {z+ +x_, x4 € 50(3)4, x_ € 50(3)_}.
We can see that, up to conjugacy,

0 0 0 0
0 0 —2¢c 2b
0 2¢ 0 —2a
0 —2b 2a 0

diag(so(3)+ ®s0(3)-) = ,a,b,c € R

Therefore, G can be either one of the groups:

G:{(é 2),14680(3)} or G:{(detéA) D,Ae@@)}.

We can easily see that the cubic polynomials fixed by the identity com-
ponent H are linear combinations of 3 and x1 (z3+22+23). It is obvious
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that the only combination that would make the polynomial harmonic
is P =ra1(2? — 23 — 22 — 22), for some 7 # 0. One can verify that the
full stabilizer of P is SO(3). By a rotation that reverses the x;-axis, if

necessary, we can assume that r > 0.

4) dimb = 2. In this case, h = s50(2)+ @ s0(2)— and H is conjugate
to the maximal torus H = {(ezg1 ei092> , 01,02 €0, 27r)}. It is easy
to see that H does not stabilize any symmetric cubic in 4 variables.

5) dim b = 1. In this case, one can show that the only 1-dimensional
ideals in so(4) are conjugate to:

bp.g = {(pz,qz)| x € 50(2), p,q € Z, (p,q) = 1}.

It follows that the identity component H,, , = { (R(g@) R(?]H)) ,0 € R}

consists of rotations of angle pf in the (z1, z2)-plane and of angle g6 in
the (x3,x4)-plane. We are looking for harmonic cubics in {x1, x2, 3, T4}
preserved by H), ,, for some p and ¢ integers.

Let V;, be the irreducible representation of SO(2) given by rotations
of speed n: ez = ez where z € C. In our case, the speed p
representation V), is given by the action on the (z1,z2)-plane: €.z =
e? 21 and Vy is given by the action on the (x3,x4)-plane: e 2o = equZQ,
where z1 = 21 + ix2 and 29 = x3 + i24.

Under the action of H),,, the space of symmetric polynomials in 4
variables S3(R*) decomposes as:

SV @Vy) =S (V) @ (S (V) @S (Vy)) @ (S (1) @ S7(Vy)) © S (V)

But one can see that S3(V},) 2 V3,®V,,. A basisin V3, is {Re 25, Im 25} =
{23 —3x123, 32322 — 23} and a basis in V}, is {Re(212121), Im(212121)} =
{(z% + 23)x1, (23 + 23)22}. Similarly, S?(V,) = Va, © Vp = Vo, ® R and
we calculate that:

S*RY) = (Vap ® V) @ (Vap ®R) © V)
©(Vp® (Vog ®R)) @ (Vag @ V)
= Vap ©Vp O Vapig © Vap—q © Vpr2g © Vp2g © V3 DV
where we used that V,, ® V;,, = Vi @ Vii—pp. This decomposition is

irreducible and the action has a fixed vector if and only if one of the
V’s in the above direct sum is Vj, the 1-dimensional representation on
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which the action is trivial. This implies one of the following possibilities
for the values of p and ¢:

p=0,¢=0,p—2¢=0,¢q—2p=0, p+2¢=0o0r2p+q=0.

We note that p and ¢ have symmetric roles since the planes (z1, z2) and
(z3,x4) can be interchanged by an orthogonal transformation. There-
fore, up to conjugation with an element in SO(4), the only possible
cases are: p =0, ¢ = 2p and ¢ = —2p. In the case ¢ = 2p, the fact that
(p,q) = 1 implies that p = 1 and ¢ = 2 and in the case ¢ = —2p, we can
take p = 1,q = —2. The conclusion is that, unless one of these condi-
tions is satisfied, the group H) , does not preserve any cubic symmetric
polynomial in four variables. But since the stabilizer in SO(4) coincides
with the stabilizer in O(4), then up to conjugacy in O(4), the last two
cases are the same. We will study each of these cases separately.
i0

a)p=1and ¢ = 2. Then Hio = {(eo 6202-9> 0 € [0,277)}. If
P is a complexified polynomial in the variables {z1, 29, Z1, Z2}, fixed
by Hi 2, it is easy to see that P should lie in Vo ® Vi, therefore P =
az2Zy+bz1%229,a, b € C. Now, P is a real harmonic polynomial if b = a.
So, any real harmonic cubic C' preserved by this group is of the form:

C = Re(azizy) = r[(z? — 22)as + 2x12024) + s[2717073 — (27 — 23) 4],
with 7, s € R. If 72 4 52 # 0, by applying a rotation of angle arctan(3)
in the (z3,x4)-plane, we can assume that s = 0. We can also assume
that » > 0. The conclusion is that all the harmonic cubics in 4 variables
stabilized by Hj 5 are on the SO(4)-orbit of the cubic h = r[(z3 —23)z3+
2x1x9x4]. The full stabilizer of h can be shown to be the disconnected

1000

2-piece subgroup Hi2 U gHi2 C SO(4), where g = 8_01(1) 8 . It s
00

0-1
isomorphic to O(2), because O(2) is the only nonabelian 2-component
compact group of dimension one.

b) If p = 0, we can consider ¢ = 1. In this case, the identity com-

ponent of G is Hp 1 = { <1;)2 699) 0 € R} >~ Gl A complexified cubic

polynomial C, fixed by this group, should belong to Vy ® V1, therefore it
should be a linear combination of z1z9Z9, z‘% and z%Zl. Calculations show
C' is harmonic if and only if it is a linear combination of the harmonic
polynomials {zf’,z%il — 22129Z2}. Therefore, the fixed real harmonic
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cubic polynomials C' in 4 variables are of the form

C =r(z3 — 3x123) + s(3x2xy — 23)

+vry (23 + 23 — 205 — 227) + uze (2} + 23 — 225 — 227),

with 7, s,u,v € R. By making a rotation in the (x,z2)-plane, we can
suppose that u = 0.
It remains now to determine the full stabilizer of the polynomial

r(aﬁ:{’ — 3371:6%) + 3(335%372 — x%) + vxl(x% + :1:% — 23:% — 235?1),

which we denote by G.

If s # 0 and v # 0, calculations show that the full stabilizer of A is
just the identity component, so G = SO(2). By making some rotations,
if necessary, we may assume that s, v > 0.

If s=0,v#0, and r # 3v, then h = r(x$ — 3w123) + vy (23 + 23 —
273 — 22%) and the full stabilizer is isomorphic to an O(2)-subgroup,
because we are also allowed to flip the signs of xo and z4. In this case
we can suppose that v > 0. In the case s = 0 and r = 3v, h becomes

6vry (23 — 23 — 22 — 22) and we saw that this polynomial has stabilizer

SO(3).

Finally, if s = v = 0 and 7 > 0, the polynomial h = r(z} — 37122)
is preserved by the identity component S!, but we can see that it is
also fixed by the element of order 3, A = (6% 0 ) and by the element

0 I
1 0 00
of order 2, g = 851 _018 and both A and ¢g do not belong to the
00 01

identity component. The rotation A and the reflection g form a group
isomorphic to S3, the symmetric group in 3 elements. S3 acts on the
identity component S! by conjugation and it is easy to compute that
the action of A on S! is trivial, while g acts by flipping the circle S*,

namely g. <102 699) = (IS egg). Using the exact sequence

0O — S —-— G — S — 0

one can verify that G = S' x S3. This completes the proof of Proposi-
tion 3.3. q.e.d.

In the next step, we are going to analyze each of the cases given
by Proposition 3.3 and classify the SL 4-folds in C* whose fundamental
cubic form has a continuous symmetry at each point.
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3.2.1 SO(3)-symmetry

Example 1. In their paper [12], Harvey and Lawson found the
following special Lagrangian submanifolds of C*, invariant under the
diagonal action of SO(4) on C* = R* x R*:

(3.14) Lo ={(s+it)u|ue S c R* Im(s + it)* = ¢},

where ¢ € R is a constant. The variety L¢ is an union of four special
Lagrangian 4-planes and when ¢ # 0, each component of L, is diffeo-
morphic to R x §3 and it is asymptotic to one pair of 4-planes in Lq.

Theorem 3.4. If L C C* is a connected nontrivial special La-
grangian submanifold whose cubic fundamental form has an SO(3)-sym-
metry at each point, then L is, up to rigid motion, an open subset of
one of the Harvey-Lawson examples.

Proof. In the above hypotheses, a trivial special Lagrangian sub-
manifold is a special Lagrangian 4-plane. We can see that the funda-
mental cubic C' of L lies on the orbit of the 0 cubic if and only L is
trivial. Therefore, assume the fundamental cubic is not identically van-
ishing. The locus where C vanishes is a proper real-analytic subset of
L, so its complement L* is open and dense in L. By replacing L by
its component L*, we can assume without loss of generality that C' is
nowhere vanishing on L. Since the stabilizer of Cy is SO(3) for all z € L,
Proposition 3.3 implies the existence of a positive real-analytic function
r: L — RT with the property that the equation

C = 3rwy (W} — wi — w3 —w?)

defines an SO(3)-subbundle F' of the bundle Py, of L-adapted coframes.
On the subbundle F, the following identities hold:

Bir Pz Pz Pia 3rwy —rwy —Trws —Twy
(3.15) Por P2 Paz Poa| _ | —rwz —rwr 0 0

B31 B2 (33 B34 —rws 0 —rwy 0

By Paz Paz Bua —rwy 0 0 —rw

Because F' is an SO(3)-bundle, the forms ag1,a3; and a4 vanish mod
{w1, w2, ws,ws}, meaning that there are functions t;; on F' such that:

(3.16) o1 = torw1 + toowa + togws + togwy

31 = t31w1 + t32w2 + t33w3 + 34wy

Q41 = tg1wy + taows + ty3ws + taawy.
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Also, there exist functions r;, i = 1,2, 3,4 on F' such that:

4
(3.17) dr = Z TiWi.
i=1

Substituting the relations (3.15), (3.16) and (3.17) into the identities

(3.18) dBij = —Bik N oy — o N Bij

and using the identities dw; = —a;; A wj, one gets polynomial relations
among r;, t;; which can be solved, leading to relations of the form:

(3.19) o1 = two, 31 = tws, 41 = twy, dr = —5rtw;

where we denoted too = t33 = t4q by t.

Differentiating the last equation in (3.19), we get 0 = d(dr) =
—5rd(t) A wi, implying that there exits a function u on F' such that
(3.20) dt = uwy.

Substituting the relations (3.19) and (3.20) into the identities

(3.21) dagj = —aik A agg + Bik N Brj
and expanding out using the identities dw; = —o;; A w; implies the
relations:

u=4r? — >
dazo = g A oo + (t2 + 7‘2)(.03 A wo
dogo = agg N\ azo + (t2 + 7‘2)W4 N wo

doys = ayo A azo + (t2 + 7“2)(4)4 N ws.

Differentiating the last equations yields only identities.

So, F — L is a SO(3)-bundle on which the 1-forms {w;,ws,ws,ws,
32, a2, gz} form a basis and they satisfy the structure equations:
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(3.22) dw; =0
dws = twy A ws + @39 A ws + s A wy
dws = tw1 A wsg — ago A wo + g3 A wy
dwy = twy Awy — aua Nwy — au3 A ws

dago = auyg A o + (t2 + 7’2)(4}3 N wo

doaygo = —ayg A ago + (t2 + 7“2)(4)4 N\ wo
days = g N aizg + (t2 + T2)w4 N w3
dr = —5rtwy

dt = (4r% — tH)wy

and the exterior derivatives of these equations are identities.
The last two equations in (3.22) imply that

dr B dt
—5rt  4r2 — 2

= W1.

This yields d(r% + t27"_%) = 0 and since L and F' are connected, there
exists a function 6 on L with |0] < § such that:

From these last two equations and from last equation in (3.22), it follows

that

do
w=—7.
c(cos40)4

Now, setting 7; = ¢(cos 40)'/4w; for i = 2,3 and 4 yields:

dng = —a3 Anz — g A1y
dns = —as2 Am2 — azg A1y
dny = —au2 A2 — auz A3
dagy = —asg N agz + 13 A2
daga = —aug N asz + ma A 12
doysz = —augz A gz + na A 3.
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The above equations represent the structure equations of the metric of
constant curvature 1 on the 3-sphere S3.

Conversely, if do? is the metric of constant curvature 1 on S2, then,
on the product L = (—%, §) x 53, consider the quadratic form

B df? + cos? 46do?
~ 2(cos46)5/2

and the cubic form

O cos? 40do?df — dg>
B c2(cos 46)5/2

The pair (g, C) satisfies the Gauss and Codazzi equations and by
Theorem 2.4 this implies that (L, g) can be isometrically immersed as a
special Lagrangian 4-fold in C* inducing C as its fundamental cubic. For
each value of ¢, there exists a unique corresponding special Lagrangian
4-fold. Since the structure equations (3.22) have an SO(4)-symmetry
and Harvey and Lawson [12] found that all the special Lagrangian 4-
folds in C*, invariant under the diagonal action of SO(4), can be written
explicitly as (3.14), the conclusion of the theorem follows. q.e.d.

3.2.2 O(2)-symmetry

According to Proposition 3.3, there are two cases of O(2)-symmetry.
The first one gives the following;:

Theorem 3.5. There is no connected nontrivial special Lagrangian

4-fold in C* whose cubic fundamental form has an O(2)-symmetry at
10
each point, where O(2) is the subgroup S'Ugo S with S1 = { (e e&;) ,

0

1000

HGR} andg():(gol(l) 8).
00 0-1

Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Proposi-
tion 3.3 implies that there exists a function r: L — R, for which the
equation

C = 37“[((.0% — w%)wg + 2wiwawy]
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defines an O(2)-subbundle F' C P, of the L-adapted coframe bundle
Pr, — L. On the subbundle F', the following identities hold:

i1 Bz Bz Pua w3 Twy  Twy  Twe
(3.23) Po1 fPoz Pos Poa| _ [rws —rws —rwy rwi

P31 Bs2 B33 Bs4 rwy —rwy 0 0

Bar Paz Baz Baa Twy  Twi 0 0

Since F'is an O(2)-bundle, the following relations hold: as; = ayq; =
age = ayo = ay3 — 2a91 = 0 mod {wq, ws, w3, ws}, meaning that there
exist functions ¢;; on F' such that:

(3.24) Qo = t11wy + t1ows + tisws + t1awy
Qg2 = to1w1 + taawa + togws + taaws
31 = tg1wy + t3owe + t33ws + 34wy
a1 = tywy + tgowr + tazws + taaws

43 — 2091 = t51w1 + tsowa + ts3ws + tsaws.

Moreover, there exist functions r; on F', ¢ = 1,2,3 and 4 such that

4

(3.25) dr = Z Tiw;.

i=1
Substituting the relations (3.23), (3.24) and (3.25) into the identities
(3.26) dBi; = —Bik N o — i A Bij

and using the identities dw; = —a;; A wj, one gets polynomial relations
among 1, t;; which can be solved, leading to relations of the form:

(3.27) 3] = 041 — 39 = (42 = Ol43 — 20(21 = 0, dr = 0.

Substituting (3.23) and (3.27) into the identities doy; = —aup A oy +
Bir N Bi; yields r = 0, contrary to the hypothesis. q.e.d.
The second case of symmetry O(2) yields the following partial result:

Proposition 3.6. There is a 2-parameter family of connected spe-
cial Lagrangian 4-folds with the property that the symmetry group of
the fundamental cubic at each point is isomorphic to O(2), where O(2)

is the subgroup S' U goS! with S' = {<I2 e?9> ,0 € R} and go =

0
100
<010 >
00 1 :
00 0-1

| coco
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Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Proposi-
tion 3.3 implies that there exist functions r,v: L — R, v > 0,7 # 3v
and an O(2)-subbundle F' C P, over L on which the following identity
holds:

(3.28) C = r(w} — 3wiwd) + 3vw; (Wi + w? — 2w2 — 2u3).

Since F' is an O(2)-bundle, the following relations hold: ag; = az; =
agy = agz = age = 0 mod {wi,ws,ws,ws} and doing the differential
analysis as in the previous cases we obtain the following structure equa-
tions on the subbundle F"

(3.29) dwi = (r — 3v)tow; A wo
dwy = (r — v)tiwi A wo
dwsg = 20t w1 A wg + 20tows A w3 + aiuz A wy
dwy = 2vt1w1 A wy + 20tows A wy — iz A ws
d(ouz) = 402 (12 + 13 + 1wy Aws
dr = —t1(3r% — rv 4 60%)wy + ta(r — 3v)(3r — 2v)wy
dv = —t1v(Tv + 1wy + tav(r — 3v)ws
d(t1) = [r(t? +t3 + 1) + v(5t3 — 3t3 + 5)]w;
d(ts) = Svtitowr + (v — 1) (8 + 13 + 1)ws
for some functions t;,t3. Differentiating these equations yields only
identities.
We were not able to integrate completely the structure equations
and find the family of special Lagrangian 4-folds that are solutions to
these equations. One thing we could observe is that the generic solution

has rank 2, since the following relations hold between the parameters
r,v,t1 and to:

2 2 4.
d((t1+t2+1)v5(r 3v)>: and

The symmetry group of the solutions is three dimensional and it is either
SO(3) or SO(2) x R2, depending on the values of the parameters r, v, t1
and t9.
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Remark. In principle, the structure equations can be integrated
using the reduction process for special Lagrangian submanifolds with
symmetries, by solving the ODE associated to it, as in [7]. The solution
would be in terms of the Jacobi elliptic functions. As for now, we do
not have an explicit integral yet.

3.2.3 SO(2) x S3-symmetry

Theorem 3.7. Suppose that L C C* is a connected special La-
grangian 4-fold with the property that its fundamental cubic at each
point has an SO(2) x Ss-symmetry. Then L is congruent to a product
¥ x R2, where ¥ C C? is a holomorphic curve.

Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Proposi-
tion 3.3 implies that there exists a function r: L — Ry for which the
equation

C = r(w} — 3wiw?)

defines an SO(2) x Ss-subbundle F' C Pr, of the L-adapted coframe
bundle P; — L, subbundle on which the 1-forms w1, ws, w3, w4 and aug
form a basis. Similar calculations as in previous cases show that the
structure equations on F' are:

(3.30) dwi = tiw1 Aws, dwg = towi Aws, dws = auz A wy,
dwy = —ays3 ANws, doyz =0
dr = —3rtowy + 3rtiwe
dt] = —uswi + (t% + t% —or? + U1 )wo

dtg = UIW1 + Uw2

for some functions wuq,us. Differentiation of these equations does not
lead to new relations among the quantities because the system becomes
involutive, according to Cartan-Kéahler Theorem. This is seen by com-
puting the Cartan characters: s; = 2, so = s3 = s4 = 0 and noticing
that the space of integral elements at each point is parametrized by 2
parameters uy, us.

We are looking to integrate the above equations and find the family
of special Lagrangian 4-folds that satisfy the hypothesis of the theorem.
The Cartan-Kéhler analysis tells us that the solution should depend on
2 functions of one variable.

235
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From the above structure equations, we can see that w; = ws = 0 and
w3 = w4 = 0 define integrable 2-plane fields on L. The 2-dimensional
leaves of the 2-plane field 'y defined by ws = wys = 0 are congruent
along I's, the codimension 2 foliation defined by w; = wy = 0. This
is clear since dt; = dts = 0 mod {w1,ws} and therefore the structure
equations of I'; are:

dwi = tiw A wa, dwy = towy N wo

where t1,ts are constant along I's. Also, the third to fifth equations
in (3.30) imply that the leaves of the foliation I's are 2-planes which
are congruent along I'y since d(eg A e4) = 0 and the 2-planes are real,
spanned by {e3, e4}. Therefore, L is a product L = ¥ xR? where ¥ C C?
is a surface. In order for L to be a special Lagrangian 4-fold, ¥ should be
a holomorphic curve with respect to a certain unique complex structure
on C2. This is because of the following argument: Choose coordinates
2 = xR +iyg, k=1..40n L =X xR? Then L is special Lagrangian if
and only if the 2-forms dx1 A dy1 + dzo A dys and dx1 A dys + dy1 A dxo
each vanish when pulled back to ¥. But

(da:l Adyy + dxo A dyz) + z'(dxl Adys + dy; A d:CQ)
= (dz1 —idxa) A (dy1 + idyz) = du A dv

where u = x1 — izre and v = y; + iy are a different set of complex
coordinates on C?. Then ¥ C C? is special Lagrangian if and only if
du A dv |g= 0, which says that X is a holomorphic curve in C? with
respect to the complex coordinates (u,v) on C2. q.e.d.

3.2.4 SO(2)-symmetry

Theorem 3.8. Suppose that L C C* is a connected special La-
grangian 4-fold with the property that its fundamental cubic has an
SO(2)-symmetry at each point. Then L is invariant under an SO(3)-
action, whose orbits are 2-spheres, and the surface we obtain in the quo-
tient M of C* by this action is a pseudo-holomorphic curve with respect
to a natural almost complex structure on this quotient M. Conversely,
the pre-image of any pseudo-holomorphic curve in M gives a special
Lagrangian 4-fold whose fundamental cubic has an SO(2)-symmetry at
each point.
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Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Proposi-
tion 3.3 implies that there exist functions r: L — R, s: L — R4 and
v: L — R4 for which the equation

C = r(w? — 3wiwd) + s(Bwiws — W) + vw; (W? + W3 — 2w — 2w3)

defines an SO(2)-subbundle F' C Py, of the L-adapted coframe bundle
Pr, — L. The 1-forms wy, ws, w3, ws and ayz form a basis and satisfy the
structure equations:

3.31
( da))l = [~t1s+ (r — 3v)to]wi Awa, dwa = [tas+ (r — v)t1]wi A wa
dws = 2t1vw1 A wg + 290w A w3 + g A wy,
dwy = 2t1vwy A wy + 2tovwe A wg — a3 A w3
dayz = =40 (13 + 13 + 1)ws A wy
dr = [t1(—6v* 4+ vr — 3s% — 3r%) — 11tovs — t4)wr
+ [~tivs + ta(6v% — 11vr + 312 + 35%) + t3lwa
ds = tgwi + tawo
dv = —v[t1(r + Tv) + tas|wr + v[—t1s + (r — 3v)ta]ws
dty = [t3(r + 5v) + t5(r — 3v) +r + 5vjwr + [s(t] +3) + s|wo
dty = [Sutity + s + s(t3 + t2)]w1 + (v — 7)[(£2 + 12) + 1wy
dts = wywy + [ug + tats(r — 3v) + t1ts(r — v) — t1tss + tatys]wo
dty = ugwi + (—ug — 975%53 — 65° 4 24rsv — 6r2s — 18v°%s
— 60t tavs® + 907“51115% + Jutits + SOt%vrs
— 9t353 — Tryts — 9t3r?s — 21130 s — Ttotss + Ttotyr
— 25t9t v — 14175%’028 — 975%7"25 — Tt1t48)wo
for some functions w1, us. The above system is in involution, so differ-
entiation of these equations does not lead to new relationships among
quantities.
From the above structure equations, we can see that w; = ws = 0 and
w3 = wyq = 0 define integrable 2-plane fields on L. The 2-dimensional
leaves of the 2-plane field I'y defined by wy = we = 0 are 2-spheres. This

is clear since the structure equations of the leaves of I'; are the structure
equations of a 2-dimensional sphere of constant radius 4v?(t2 + t3 + 1):

dws = —agq A wy, dwyg = agq A\ ws, dagg = 41}2(15% + t% + 1)(413 N wy

237
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and t1, t, v are constant along I'y since dty =dts=dv=0 mod {w;,ws}.
Therefore L is foliated by non-congruent spheres.

The 2-dimensional leaves of the other foliation I'e, defined by w3 =
w4 = 0, are congruent. This follows from the structure equations

dwi = [—tls + (T‘ — 31})152](4)1 Awo, dwy = [tQS + (7“ — v)tl]wl N wo

and the fact that dr = dv = dt; = dta =0 mod {wi,ws}.

Also, the structure equations imply d(e; A ea A Jeyx A Jea) = 0
mod {ws,ws}. Therefore the complex 2-plane (e1,eq, Jei, Jeg) is con-
stant along each leaf of the I'o-foliation and each such leaf lies in an
affine plane parallel to this 2-plane.

If we let woy = [—t15+ (r—3v)ta|wi + [t2s+ (r—v)t1]we, the structure
equation for the I'y leaves can be written as:

dwi = wo1 ANwa, dwy = —wo1 Awi, dwoy = 2(’/“2 + s? — U2)u)1 N wo.

This shows that the leaves of the I's foliation are congruent surfaces
of Gauss curvature 2(v? — r2 — s2), lying in the affine complex 2-plane
(61, €9, J€1, J€2).

Computations show that the structure equations are invariant un-
der an SO(3)-rotation about some point in C*. Therefore, the solutions
should be special Lagrangian 4-folds that are invariant under the sub-
group SO(3), as it sits naturally in SO(4) and hence in SU(4). The
orbits of the SO(3)-action are 2-spheres.

We look now for special Lagrangian 4-folds L, invariant under the
action of SO(3). Let

X4ty 3
z = . y X = ) ) Y — ) ) eR
<x4+ly4> (z1,22,23),y = (Y1,Y2,Y3)

denote the coordinates on C*. The subgroup SO(3) acts diagonally by
rotation in x and vy,

AL XFY ) 2 (AXTAYY S cg0).
g+ 1Y4 T4+ 1Y4
Let X1, X2, X3 be the infinitesimal generators of SO(3), where

.0 ) ) )
1—1628763—1‘387624-11287%—3/36?/2
.0 ) ) 9
2_$387xl_x107x3+y387y1_y107yg
0 0 0 0
Xg=or1— —To—+y15— — V2

Oz O0xy ) oy’
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The 4-fold L is invariant under the flow of X;, i =1,2,3, so (X;w) =
0,7=1,2,3, where w = dx - dy + dx4 N dy4 is the symplectic form and

dx - dy := dx1 A dy; + dxo A dys + dxs A dys.
It is easy to calculate that

(X1w) |L= d(z2y3 — 23%2)

which implies that zoy3 — x3y2 = c1, where ¢; € R is a constant. Simi-
larly, we can show that

T3Y1 — T1Ys = C2, T1Y2 — T2Y1 = C3.

From here it follows that

XXy=c¢c= (01502763)7

where ¢ € R3 is a constant vector.

If ¢ # 0, then x,y are linearly independent and therefore the stabi-
lizer of a point on the orbit is trivial. This implies that the orbit has
dimension 3, but we know that the orbits are 2 dimensional spheres. It
follows that ¢ = 0, i.e., x and y are linearly dependent. So, L lies in the
6-manifold ¥ C C* on which the coordinates are given by

, ((x +iy)u

X , x,y € R, u=(uy,us,u € 52
m4+zy4> Y (1, uz, ug)

It is easy to compute that

w |y = d(zur) A d(yur) + d(zug) A d(yus) + d(xus) A d(yus) + dag A dyy
=dx ANdy + dxyg N dyy.
Dividing out by the SO(3)-action on ¥, we obtain in the quotient a 4-
dimensional manifold X*, with coordinates (x,v,z4,y4). The leaves of
the w3 = wy = 0 foliation are 2-dimensional surfaces M?2. We calculate
now the pullback of the volume form to ¥. Denote z = z + ¢y and
w = x4 + iy4. So,
Q |E =dz1 Ndzg Ndzg Ndzy |E
= d(zu1) A d(zuz) A d(zuz) A dw
= zz(u;;dul A dug + urdug A dus + uadug A duy) A dz A dw

1
= gd(z?’) A dw A do

239
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where do = usdui A dug + uidus A dug + usdus A duy is the area form of
the 2-sphere S2.
Then L C ¥ is special Lagrangian if and only if the 2-forms

a=drANdy+dey Ndys = %(dz/\d?—l—dw/\dw)
. .
B = Im(3d(=*) A dw) = —é(d(z?’) Adw — d(3) A dD)

each vanish when pulled back to M? C X*. But:
aNoa= —%(dz/\dé/\dw/\dfu)
BAB= %(d(z?’) Adw A d(Z3) A dw) = %((zE)de Adw A dZ A dio).
Rescaling 3 by dividing it by 2zZ
g= —L(d(z?’) A dw — d(z°) A dw)

we get that («a + 25)2 = 0, so this form is decomposable and it is easy
to compute that '
~ i
a+if=—(E AN
+ i 222(51 £2),
where & = zdz — iZdw and & = zdZ — izdw. The forms &1, & form a
system which is not integrable since

&y = %dw Ad@#0 mod {&, &)

In fact there is no combination of the forms &1, 2 that is integrable.
Since a + i3 |y= 0, it implies that M? is a pseudo-holomorphic
curve in X4, with respect to a certain almost complex structure, which
is not integrable. Conversely, every almost complex surface in X* lifts
to a special Lagrangian 4-fold L ¢ ¥£6 ¢ C%. q.e.d.

3.3 Discrete stabilizer type

Next, we are analyzing the case of discrete stabilizer type. Suppose that
the stabilizer G of the fundamental cubic of a special Lagrangian 4-fold
is a finite subgroup of SO(4). If g is an element of G, then g is conjugate
to an element in the maximal torus of SO(4):

e27rir 0
{( 0 eQWiS>7T€Q7SEQ, T‘,S<1}.
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The following result tells us when there exists a harmonic cubic in
4 variables fixed by a nontrivial element ¢ in the maximal torus:

2mir

Proposition 3.9.  The element g = (e 0 627ri8>7 where T €

Q,s € Q, r,s < 1, fixres a nontrivial harmonic cubic in four variables
(x1,x9,x3,24) if and only if at least one of the following conditions is
satisfied:

1.

3r € Z, when the fixred harmonic cubics contain linear combina-
tions of {x3 — 3w123, 3xiwy — 23 };

. T € Z, when the fixed harmonic cubics contain linear combinations

of {x3 — 3x123%, 32379 — 23, 21(2? + 23 — 223 — 22%), 2o(2? 4+ 23—
2a3 — 223)};

. 2r 4+ s € Z, when the fized harmonic cubics contain linear combi-

nations of {(x? — x3)xs — 2w120m4, (23 — 23)24 + 2717273};

. 2r — s € Z, when the fized harmonic cubics contain linear combi-

nations of {(x? — x3)x3 + 2r17974, (22 — 22)24 — 2217073);

. 2s +r € Z, when the fired harmonic cubics contain linear combi-

nations of {(x% —zhz1 — 2w0w324, (:v% — 2 z9 + 2217374 )}

. 28 —r € Z, when the fized harmonic cubics contain linear combi-

nations of {(l‘% —zh)z1 + 2w073724, (x% — 29 — 2w11374 )

3s € Z, when the fixed harmonic cubics contain linear combina-
tions of {x3 — 3w3x], 3x3xy — 23};

. § € Z, when the fized harmonic cubics contain linear combinations

of {z3 — 3wsa3, 3adwy — 23, 23(22% + 223 — 23 — 23), z4(22% +
273 — 2% — 23)}.

Proof. Let Pg = P3(z1, 22, 71, z2) be the space of complexified cubic
polynomials, in the variables (z1, 22, 21, 22), where z; = x1 + ize, 29 =
x3 + ixgy. The maximal torus in SO(4) acts on H(% = H3(z21, 20, 71, 22),
the space of complexified harmonic cubics in 4 variables (z1, 22, 21, 22),

as follows:

(628" eQ?ris)'P(Z;l?ZQ)E? 5) = P(ZLZ;’ZTa Zg)a P e H%
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where 2] = 2T 21, 25 = e?™3 2y, Under this action, the space H%

decomposes as follows:

HE = H3(21, 20) © H(P%(21, 20) @ P71, 22))
® H(PY 21, 20) @ P2z, 22)) @ H3 (21, &)

A basis for the space H3(z1, 22) is given by the polynomials {z:f, z%zg,

zlz%,zg’}. Since g.z1 = 2™z and g.zo = 2™z, it follows that
g.23 = T3 g2la = 220 g223 = 274292122 and
g.zg’ = 667”'52%. This further implies that unless e5™" = 1, e2mi(2r+ts) — 1,
e2mi(r+2s) — 1 or ¢0™5 = 1, there is no fixed element in the space

H3(21, z2). The above conditions are equivalent to 3r € Z, 2r + s € Z,
r+42s € Z or 3s € Z. Therefore, H3(21, z2) decomposes into the follow-
ing four weight spaces:

H3(21,22) = Via.0) ® Viz1) @ Vi12) ® Vio.3)-

All these weight spaces have multiplicity 1 and a basis in V(3 ), V(21),
V(1,2), V(0,3) 1s given by the harmonic polynomials 23,2229, 2125 and 23
respectively.

We analyze now the fixed elements for the space H(P?(z1,22) ®
Pl(z1, %)) of harmonic polynomials in P?(z1, 20) @ P1(Z1, 22). It is easy
to see that a basis in the space H(P?(z1,22) ® P(z1,23)) is given by
the harmonic cubics

{272, 217 — 2212070, 237 — 2212070, 25371}
and this space decomposes into:
H(P*(21,22) ® P'(71, 7)) = Vig,~1) © V(1,00 © Vio,1) ® Vi—1,2)-

We can see that unless at least one of the conditions: 2r — s € Z,r €
Z,s € 7 or 2s — r € 7 are satisfied, there is no fixed vector in any of
the weight spaces.

Doing a similar argument, one can see that a basis in the space
H(P(21, 22) ® P?(71, 22)) is given by the polynomials

—2 =2 =2 2
{2217, s171” — 2022122, 202" — 2012122, 21%2° }
and the space decomposes into:

H(Pl(zl, 22) ® 732(5, Z)) = Vica) @ Vic1,0) @ Vio,—1) @ Vii,—2)-
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Unless at least one of the conditions: —2r +s € Z,—r € Z,—s € Z or
—2s 4+ r € Z is satisfied, there is no fixed vector in any of the weight
spaces.

Finally, a basis in the space H>(Z1, Z2) is given by the polynomials
{273, lZy, 5, 53} and this space decomposes into the weight spaces:

H (21, 22) = Vi_a0) ® Vica,—1) @ Vi_1,-2) ® V(_o,—3)-

For there to be a fixed vector in this space, at least one of the following
conditions should be satisfied: —3r € Z, —2r —s € Z, —r — 2s € Z or
—3s € Z.

Therefore, the space of complexified harmonic cubics decomposes
under the action of the maximal torus into 8 pairs of opposite weight
spaces, each of multiplicity one:

HE = Vis0) © Vies,0) © Vien) © Vica,—1) ® Viug
@ ‘/(_17_2) @ ‘/(073) @ ‘/(07_3) @ ‘/(27_1)
EB ‘/(_271) @ ‘/(170) @ ‘/(_170) @ ‘/(0’1) @ ‘/(0’_1) @ ‘/(11_2) @ ‘/(_172)'

A real harmonic cubic is the sum of elements drawn from these
weight spaces, with the coefficients in opposite weight spaces being com-
plex conjugates. Then, there exists a fixed element in the space of real
harmonic cubics in 4 variables if and only if there are nontrivial ele-
ments in the maximal torus that act trivially on at least one pair of
these weight spaces. By the above analysis, one can see that this is
equivalent to the satisfaction of at least one of the following conditions:
(1)3reZ,(2)reZ, (3)2r+scZ,(4) 2r—se€Z, (5 2s+r e Z, (6)
2s —r €Z,(7) 3s € Z, (8) s € Z. Next we assume that exactly one of
the conditions above is satisfied:

1) 3r € Z. In this case g acts trivially on the pair of opposite weight
spaces V(3 o) and V(_3 ¢y and the fixed real harmonic cubics in 4 variables
are of the form a2z} + az3. So,

C = Re(az}),
where a € C. Therefore, a basis in the space of fixed real harmonic
cubics is given by the harmonic polynomials {z$ — 32123, 3222, — 23}
2) r € Z. This condition implies also 3r € Z and ¢ acts trivially on

the pairs of opposite weight spaces V(3 ), V(_3,0), V(1,0) and V(_1 ). So,
the fixed real harmonic cubics are of the form:

C = Re(az} + b(27 — 2210%)),
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where a,b € C. Therefore, a basis in the space of fixed real harmonic
cubics is:

2 o2 2, 2 2 2 2., 2 2 2
{23 —3x123, 30iwo—ad, x1(23+23—20%—223), xo(a?4+23—222—-227)}.

3) 2r + s € Z. Then g acts trivially on the pair of opposite weight
spaces V(1) and V(_ _1) and the fixed real harmonic cubics are of the
form:

C = Re(aziz),

where a € C. A basis in the space of fixed real harmonic cubics is given

by the polynomials: {(2? — z2)z3 — 2z17274, (2% — 23)w4 + 2712073}

4) 2r — s € Z. The element g acts trivially on Vig,—1) and V(a1
and the fixed real harmonic cubics are of the form:

C = Re(aziz),

where a € C. Thus, a basis in the space of fixed real harmonic cubics is
given by the polynomials: {(2? —22)x3+2x17224, (23 —23)24—2717273}

5) 2s + r € Z. In this case g acts trivially Vii,2) and V(_; _9) and
C = Re(az 23),

where a € C is the general harmonic cubic polynomial fixed by the
action. Therefore, a basis for the space of fixed real harmonic cubics
is given by the harmonic polynomials {(23 — 2%)x1 — 2v2w374, (73 —
13) w2 + 2717324}

6) 2s —r € Z. Then g acts trivially on the pair of opposite weight
spaces V(_12) and V{1 _o) and the fixed real harmonic cubics are of the
form:

C = Re(227),

where a € C. A basis is given by the polynomials: {(z3 — 23)z1 +

2291374, (3 — 23)T0 — 2m17374}

7) 3s € Z. Now g acts trivially on the pair of opposite weight spaces
Vi0,3) and V(g _3) and the fixed real harmonic cubics are of the form:

C = Re(az3),

where a € C and therefore, a basis is given by {m% —3x373, 393:2))1:4 —z3}.
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8) s € Z. In this last case, g acts trivially on Vg 3), V(0,—3), V(0,1) and
Vio,—1)- The real harmonic cubics fixed by the action are of the form:

C = Re(azs + b(25% — 2212077)),

where a,b € C. Therefore, a basis in the space of fixed real harmonic
cubics is:

{x% — 35633:?1, 3x§z4 — xi, 933(233% + 233% — xé — xi),

x4(20% + 223 — 23 — :BZ)}
q.e.d.

Remark 1. In Figure 1 below we graphed in the coordinates (r, s)
mod Z all the possibilities appearing in Proposition 3.9. By moding
out by the Weyl group of SO(4), we can consider the possibilities only
in the triangle found by intersecting the regions below the lines r = s
and s = 1 — r. Furthermore, since the stabilizer of g in SO(4) coincides
with its stabilizer in O(4), we can actually mod out by the Weyl group

of O(4). The elements (emr o ) and (emr 9 ) are conjugate to

0 6271'7,'.9 0 e—27ris
1000
each other in O(4), by the element <8 § 9 9%) € O(4). Therefore, we
00 0 1

can restrict our attention to the cases found in the small shaded triangle
shown in Figure 1, which is a fundamental Weyl chamber.

Remark 2. If only one of the conditions in the small triangle are
satisfied, the stabilizer G will be at least an SO(2), thus continuous, and
we will recover the cases already studied in Section 3.2. For example,
if only 2s — r € Z, moding out by Z, we get 2s — r = 0. The stabilizer

0
continuous symmetry studied in Section 3.2.3.

group in this case looks like {(6219 690 ,0 € R} and this is the case of

Therefore, in order to find the fundamental cubics that have discrete
nontrivial stabilizers under the action of SO(4), we have to look at
elements that have nontrivial components in at least two non-opposite
weight spaces. As seen in Figure 1, up to conjugacy in O(4), there are
six nontrivial elements in the maximal torus that act trivially on more
than two pairs of weight spaces.
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2r+i2 ; /Zr-s:O

r+2s=1 S

213

13

IE 2/3

Figure 1. The weight spaces and a fundamental Weyl chamber.

Corollary 3.10. If G is a nontrivial discrete subgroup of SO(4)
that stabilizes a nontrivial polynomial h € H3(R*), then G can not have
elements of order > 6.

Proof. 'This follows from Proposition 3.9 and the above remarks.
Any element in G is conjugate to an element of the form g= (ezgw J2is ) ,
Wherer:%e@, 52%6@, r,s < 1.

By looking at the small triangle in Figure 1, we can see that there
are the following possibilities for the values of r and s mod Z and mod
the Weyl group:

1) If r+2s € Z and 3r € Z, then r = 2 and s = ¢. The element

4ri
g= (6 50 ) has order 6 and acts trivially on the pairs of opposite
0 e3

weight spaces V(3), V(_3,0) and V(1 2),V(_1,_2). The general harmonic
cubic stabilized by this element is

C = Re(az} + bz123), a,b € C.
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2) Ifr+2s€ZandQT—SEZ,thenwegetT:%andSZ%. The

6mi
element g = (e 5 20,”.> has order 5 and acts trivially on the pairs
0 e 5

of opposite weight spaces V(y ), V(_1 _9) and V(g _1), V(2 1). Therefore,
the general harmonic cubic stabilized by this element is

C = Re(az 25 + bzi7), a,b e C.
3)If 2s —r € Z and r + 2s € Z, then we get (r,s) = (3,1). The
element g = (‘01 ?) has order 4 and acts trivially on the pairs of

opposite weight spaces V(_1 ), V{1, 2y and V(q 2y, V(_1 _2). The general
harmonic cubic stabilized by this element is
C = Re(aziz3 + bz123), a,b € C.
4) If s € Z and 3r € Z, then we get (r,s) = (%,0). The element
g = (e? 102 ) has order 3 and acts trivially on the pairs of opposite
Welght spaces ‘/(370), ‘/(,370), ‘/(071), ‘/(07,1) and ‘/(073), ‘/(0773). The general
harmonic cubic fixed by this element is

C = Re(az} + bz3 + c(257 — 2217122)), a,b,c € C.

5)If2s —r €Z,2r —se€Z,3r € Z and 3s € Z then we get (r,s) =

4mi

(2,%). The element g = <€T 9 ) has order 3 and acts trivially on

27i

0 e 3
the pairs of opposite weight spaces V(_1 2), V(1,—2), Vi2,-1) V(=2,1), V(3,0)5
V(—3,0) and Vg 3), V(0,—3)- The general harmonic cubic stabilized by this

element is
C = Re(azizs + b2z + c2f +e23), a,b,c,e € C.

6)If s € Z, 2r +s € Z and 2r — s € Z, then we get (r,s) = (3,0).
The element g = (*012 g ) has order 2 and acts trivially on the pairs of
opposite weight spaces V(g 1), Vi0,-1); V(2,1), V(—2,-1),

Via,—1), V(=2,1) and V(g 3y, V(0,—3). The general harmonic cubic stabilized
by this element is

C = Re(azg + b(z%@ —2212129) + cz%zz + 62%5), a,b,c e e€C.

NlreZ seZ,r+2s€Z,2r+s€Z,2s—r € Zand 2r—s € 7,
meaning all the conditions are satisfied at once, then we get r = 1 and
s =0, so g is just the identity element.
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3.3.1 Polyhedral symmetry

Now we are going to find the nontrivial harmonic cubic polynomials
in 4 variables whose stabilizer is one of the polyhedral subgroups of
SO(4) described in Section 3.1. and we will study the families of special
Lagrangian 4-folds with this stabilizer type.

Proposition 3.11. The SO(4)-stabilizer of C € Hz(R*) is a poly-
hedral subgroup of SO(4) if and only if C lies on the SO(4)-orbit of
exactly one of the following polynomials:

L. ray (23 — 23 — 23 — 23) + sxaxsz4, for some r,s > 0 satisfying

s # 2v/5r, whose stabilizer is the tetrahedral subgroup T of SO(4);

2. swoxsxy, for some s > 0, whose stabilizer is the irreducibly acting
octahedral subgroup O ;

3. rlzy(2? — 22 — 22 — 22) + 2v/Bwoxsza], 7 > 0, whose stabilizer is

the irreducibly acting icosahedral subgroup IT.

Proof. The polyhedral subgroups of SO(4) were found to be the
tetrahedral subgroup T of order 12, the reducibly and irreducibly acting
octahedral subgroups @ and O™, each of order 24, the reducibly and
irreducibly acting icosahedral subgroups I and I, each of order 60.

First we look at the tetrahedral subgroup T and find the harmonic
cubics in 4 variables {x1,x9, 23,24} that are stabilized by this sub-
group. As we have seen in Section 3.1, T = {[t,t]|{t € T}, where
T = {£1, +i, £+j, +k, %(:l:l +1i+j+k)} is the binary tetrahedral sub-
group of the unit quaternion group U, of order 24. The subgroup T

sits in SO(3) and it is generated by the transformations: [i,i] with rep-
100 0

resenting matrix [8 L9 } , relative to the basis {1,1,j, k}, [j,j] with
0 —

OOO)—‘O | oo

1
0
10
1
0

| coo

1

0

0

representing matrix [ o FA+i+j+k),5(1+i+]j+k)
0

. We can see that T fixes a cubic in

—
oo OL— 1
o
=
o,

=)

with representing matrix é %
{x1,x9,x3, 24} if and only ifQ theocubic is invariant under the flips of the
signs of two of the coordinates {x2,z3,z4} and also under permuting
{2, 3,24} while keeping x; fixed. Therefore, the cubic should be a
linear combination of the polynomials x3, x1(z3 + 23+ 23) and zow374.
Now, considering the extra condition that the cubic should be harmonic,
it follows that the harmonic cubics stabilized by T lie on the SO(4)-orbit
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of the polynomial
(3.32) C =rxi (23 — 23 — 22 — 23) + swox314,

for some r,s > 0.

We turn now to the harmonic cubics invariant under the reducibly
acting octahedral subgroup O, which sits in SO(3). As we have seen in
Section 3.1, the group O = {[o,0] | 0 € O}, where O = TU%(I—H)T is
the octahedral binary subgroup of U, of order 48. Since O contains T, it
follows that O is generated by the generators of T and the extra element

100 0
1 . 1 . . . . 01 00 .
—ﬁ(l +1), —\/5(1 +1i)| with representing matrix <8 00 (1)> This extra

element fixes the polynomial (3.32) if and only if s = 0. Therefore, the
harmonic cubics stabilized by O lie on the SO(4)-orbit of the polynomial
rry(x? — 23 — 2% — x3),r > 0 which has full symmetry SO(3).
We look now for harmonic cubics invariant under the irreducibly
1

acting octahedral subgroup O = {[0,0],0 € T and [0, —0],0 € ﬁ(l +

i)T}. The subgroup O contains T and it is generated by the gener-

ators of T plus the extra element [%(1 +1i), —%(1 + 1)} This extra

element fixes the harmonic polynomial (3.32) if and only if » = 0. There-
fore, the harmonic cubics stabilized by O lie on the SO(4)-orbit of the
polynomial sxoxsxzys, s> 0.

We look now for the harmonic cubics invariant under the reducibly
acting icosahedral subgroup I, which sits in SO(3). As we have seen
in Section 3.1, I = {[{,!] | | € I}, where I = U}_,(& + Zi+ 1j)FT
is the binary icosahedral subgroup of U, of order 120 and 7 = @
The subgroup I contains T and it is generated by the generators of
T plus the extra element [% + 5i+ %j, % + 5i+ %J] Straightforward
calculations show that this extra element fixes the harmonic polynomial
(3.32) if and only if s = 0. Therefore, the harmonic cubics stabilized by
[ lie on the SO(4)-orbit of the polynomial 721 (2% — 23 — 3 — 2%) which
has full symmetry SO(3).

Finally, we look for the harmonic cubics invariant under the ir-
reducibly acting icosahedral subgroup I"™. From Section 3.1, IT =
{[r*,r] | r € I}, where r* is the image of r € I under the automorphism
of the quaternion field that changes the sign of v/5. This automorphism
exchanges 7 for —%. The subgroup I contains T and it is generated by
the generators of T plus the extra element [(%+%i+%j)+, %+%i—|—%j ] =
[—% — %i + %j, % + 5i+ %J] Straightforward calculations show that
this extra element fixes the harmonic polynomial (3.32) if and only if
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s = 2¢/5r. Therefore, the harmonic cubics stabilized by I lie on the
SO(4)-orbit of the polynomial r[z1(x? — 23 — 2% — 22) + 2v/bxaz324].
To conclude, one can easily compute that the identity component of
the stabilizer of the polynomial (3.32) is always discrete, except in the
case s = 0. q.e.d.

We now consider those special Lagrangian submanifolds L C C*
whose cubic fundamental form has a polyhedral symmetry at each point.

Theorem 3.12. Suppose that L C C* is a connected special La-
grangian 4-fold with the property that its fundamental cubic at each point
has a tetrahedral symmetry T. Then, up to congruence and scaling, L
is the Harvey-Lawson example L C C* defined in standard coordinates
by the equations

L: |z = |21] = |22] = |23]
Re(zpz12223) = V2.
Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Proposi-

tion 3.11 implies that there exist functions r,s: L — Ry with s # /5r
and a T-subbundle F' C P, over L for which the following identity holds:

C = 3rwi (W} — w? — w2 — wi—) + 6swawswy

Since F' is an T-bundle, the following relations hold: a9y = a3 =
g = g = age = ag3 = 0 mod {wi,ws, w3, ws}. The usual differential
analysis yields the following structure equations on F':

(3.33) dwiy =0
dwy = \/mwl A Wy
dwsg = \/ﬂ(yl A wsg
dwy = \/mwl A Wy

dr = —=5rv/ s2 — r2w;

ds = —sv/52 — r2w;.

From the last two equations in (3.33), it follows that r = cs°, ¢ > 0
constant. We can suppose that ¢ = 1 since the equations are invariant
under scaling. Moreover, s € [—1, 1].
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The above structure equations imply that w; = 0 defines an inte-
grable 3-plane field which we denote by I's and that ws = w3 =w4 =0
defines an integrable 1-plane field denoted by I';. Since dwy = 0, it
follows that wy = dxq on the leaves of the foliation I'y. The structure
equations (3.33) also imply d(sw2) = d(sw3) = d(sw4) = 0 and therefore

there exist functions x9, x3, x4 on L such that wy = d%, w3 = d% and

wy = d%. The metric g = dm%ﬁ;ﬂ is well-defined on the leaves of
the I'y foliation.

Equations de; = ejoj; — Je;jfj; and d(Je;) = e;jfB; + Jejay; yield
that, as matrices

0 3s%wy

d(61 Jel) = (61 Jel) (_385w1 0

) mod {w2, w3, ws4}.

Therefore, the leaves of the I'; foliation are plane curves with curvature
k = 3s°, lying in the complex line (eq, Je1). These curves are congruent
since ds is a multiple of w.

Now consider the I'y foliation, defined by the equation wy = 0. Since
s is constant on its leaves, the connection matrix A = ( ag g g )

i (]

satisfies AN A = dA = 0. Therefore A takes values in a 3-dimensional
abelian subalgebra g C su(4). The maximal torus of SU(4) is conjugate
to the subgroup

3
T3 = {diag(eieo, 01 eif2 ¢if3) | Z 0; =0 mod 277}
k=0

and the maximal torus acts on L by rotating around a plane curve C.
Therefore, the solution is invariant under the torus action and the only
special Lagrangian 4-folds with this property are described explicitly by
Harvey and Lawson in their paper [12]. If (2o, 21, 22, z3) are coordinates
on C*, then the special Lagrangian 4-folds in C* invariant under 7 look
like:

(3.34)  Jal — |zl =, |2l — |zl =c2, 20 — |z = c,
Re(zpz12223) = a
for some real constants a, ci,co,c3. It is easy to see that the solution

of the structure equations (3.33) is symmetric in (21, 22, 23), therefore
Cl = Cy = C3 = C.
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o . . . . _ 0
Reparametrizing the solution using polar coordinates zp = rpe'*,

=0...3, (3.34) becomes

(3.35) r%—r%zr%—r%zr%—r%zc
a
0y = arccos —— — 61 — 0y — 05.
roTr1T2T3

We will find out for what constants a and ¢, the special Lagrangian
4-fold defined by (3.35) is a solution of the structure equations. As we
have seen, the solution is a special Lagrangian 4-fold which is foliated
by congruent curves of curvature 3s° and 3-manifolds which are the
T3-orbit of the points on the leaves of the first foliation.

Since z(r,61,02,03) = (V¢ + r?, arccos ﬁ — 01 —05—03,71,01,1,
62,7,03), the tangent plane to a T3-orbits is spanned by the vectors
V] = 29, = —a%ojta%l, V2 = 2, = —8%04—8%2 and v3 = zg, = —8%04—3%3.

We look now for another vector vg in the tangent space of L such
that {vg, v1,v2,v3} are a basis of this tangent space. Since this tangent
space is special Lagrangian, the symplectic form w and the imaginary
part of the holomorphic volume form € should vanish on it. Also, vg
should be orthogonal to v;, i = 1...3, so g(vg,v;) = 0 for i = 1...3.

Let us write

3
0 0
Vo = Zz;/lzael + VzafrZ

The symplectic form in polar coordinates is w = Z?:o rydr; A df; and
the condition w(vg,v;) = 0 for i = 1,2,3 implies that v; = % = r%,
where v = rgrp. The metric on C* is g = S22 (dr;)? + r2(d;)? and
the condition that g(vg,v;) = 0 for i = 1...3 implies the relations p; =

2
R0 = T%, for i = 1,2,3, where u = por3. Finally, straightforward

T3
calculations yield that the condition Im Q(vy, v, v3,v9) = 0 implies the
relation 7 = tan(fp + 01 + 02 + 03). Therefore,

_|_ R

. _23:1 0 tan(fp+ 61+ 05 +05) O
0= 7“228(9@ T 87“2'.

Next, we find an integral curve of the vector field vy, that lies in:
L: ri=ro=r3=7r, 1r9=VcCc+12
a
———— — 01 — 05— 05.
r3ve + r?

0y = arccos
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When ¢ = 0, an integral curve is given by

C: TOo=T1=T2=T3=T, 90:91:92:93:9, COS(49):%.

Therefore, the curve C is given by: z1 = 20 = 23 = 24 = rew,
r*cos(46) = a and it is a plane curve which lies in the complex line
21 = 2o = z3 = z4. We have seen that L is foliated by plane curves with
curvature 3s°, so we will determine for what value of a the curve C has
this curvature. We choose an orthonormal basis in the z; = 29 = 23 = 24
plane: e; = (3,0,3,0,3,0,3,0) and ez = (0,3,0,2,0,3,0,3) and in
this basis, the curve C' is given by v(0) = (2rcosf,2rsinf), where

1
r= (005?49)) *
1 5
Computing the curvature of v, one gets k(6) = —3a~1(cos(46))1.
But the curves that foliate L are parameterized by arclength

(3.36) wy =dt =di|y'| = Qai(cos 0)_%

and the curvature in this parameterization is k = 3s°. Therefore
1

(3.37) s=(2)5 = ————(cos46)1.

25a20

From the structure equations (3.33), it follows that ds = —sv/s? — 510wy
has to be satisfied. Using equations (3.36) and (3.37), we get

(3.38) ds = (cos40)7 sin 40 w;

wilo
Sles

25a

and from equation (3.38),
(3.39) —svs?2— 510wy

= 1 - (00549)% <11(cos49)é 1

2 2%@10 4a%

1
2

(cos 46) g) wi.

a2

S

Equating these last two equations, it follows that @ = v/2. The structure
equations are satisfied now and L is a special Lagrangian 4-fold.

To conclude, the special Lagrangian submanifold L that is a solution
to the structure equations (3.33) can be described explicitly as:

L: ‘Z0| = ‘Z1’ = ’22‘ = ’Z3|, Re(20212223) = \5/§
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Theorem 3.13. Suppose that L C C* is a connected special La-
grangian 4-fold with the property that its fundamental cubic at each
point has an octahedral symmetry O, where QT is the irreducibly acting
octahedral subgroup of SO(4). Then, up to congruence, L is the Harvey-
Lawson cone in C* defined in standard coordinates (2o, 21, 22, 23) by the
equation

(3.40) L: |zl =|z1] = |22| = |23], Re(z0z12223) = 0.

Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Proposi-
tion 3.11 implies that there exists a function s: L — R, and an O*-
subbundle F' C Pr, over L for which the following identity holds:

C = 6swowswy

and the 1-forms wi,wo,ws,w, form a basis on F'.
Straightforward calculations show that the structure equations are:

(3.41) dwi =0, dwy=swi Awsy, dwg= swi Aws,
dwy = swi Nwy, ds= —s%wy.
The structure equations imply the equation

de; = s(esws + esws + eqwy) = s(dx — eqw),

where x: LT — C*. From here and the last equation in (3.41), it
follows that x = <} + x9, where z¢ is a constant which we can reduce
to 0 by translation. Therefore x = L. On the leaves of the foliation
wo = w3 = wq = 0, de; = 0 and thus the vector e; is constant along
these leaves. This tells us that the special Lagrangian 4-fold L' is a
cone on some 3-dimensional manifold ¥ C S7. We have to determine
now for what 3-dimensional manifolds ¥ C S7, the cone C(X) is special
Lagrangian and satisfies the structure equations.

In the case t = —s we obtain x = —¢ and the solution is again a
cone through the origin, call it L~. We have that L = LT U L™.

The connection matrix A = < ag ' g” > satisfies AN A =dA=0.

ij  Qij

Therefore A takes values in an abelian subalgebra g C su(4). The group
G = exp g is a maximal torus of SU(4) and it is conjugate to the diagonal

torus 72 = {diag(ewo, et 102 ¢i03) . 22:0 0; =0 mod 27r}.
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G acts transitively on the cone, so the cone is homogeneous and we
have to determine which of the orbits on the 7-sphere are special La-
grangian. The solution is invariant under the torus action and therefore
the links of these special Lagrangian cones are 3-dimensional tori on
S7. They are described explicitly by Harvey and Lawson in their paper
[12]. It follows that L is given in standard coordinates (zo, z1, 22, 23) by
(3.40).

Therefore, the special Lagrangian cone L is a union of two cones L™
(obtained in the case t = s) and L~ (obtained in the case t = —s) with
vertices at the origin through the 3-dimensional tori 7+ and 7~ on S7
given by

+ - ibp =~ 61 ifa © if3 ) . = —
g _{<2e 5 03¢ af )'9°+91+02+63 2}

1 5 1 .0 1 .0 1. 3
T~ =< (se, —e —ei® —e ) 0y + 61 + 0y + 03 = = ¢
{(26 726 726 726 0o+ 01+ 02+ 03 9
Theorem 3.14. There are no connected special Lagrangian 4-folds

whose fundamental cubic at each point has an icosahedral symmetry 1T,
where IT is the irreducibly acting icosahedral subgroup of SO(4).

Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Proposi-
tion 3.11 implies that there exists a function r: L — R, for which the
equation

C = 3rfwi (@] - wi — Wi — wi) +2Vhwawswi]

defines an I'"-subbundle F' C Py, of the L-adapted coframe bundle Py, —
L. The usual differential analysis on the subbundle F yields » = 0,
contrary to the hypothesis. q.e.d.

3.3.2 Symmetries of order 6, 5 and 4

We have seen in Corollary 3.10 that the elements of a discrete stabilizer
of a fundamental cubic of a special Lagrangian 4-fold have order less or
equal to 6. From the proof of this corollary, the general harmonic cubic
stabilized by an element of order 6 is

C =Re(rz? + sz123) = r(a$ — 3z123) + s[(23 — 2321 — 2w02324]

where we can arrange r, s to be real and nonnegative by making rotations
in the z; and in the zo-lines. Easy computations show that the full

255
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stabilizer of C is the dihedral group on 6 elements Dg, if 7 # 0 and
s # 0. A similar differential analysis as in the previous cases yields the
following result:

Theorem 3.15. There are no nontrivial special Lagrangian sub-
manifolds in C* whose fundamental cubic has a discrete stabilizer which
contains an element of order 6.

Next, the general harmonic cubic stabilized by an element of order
5 is
C = Re(rz125 + 5241 %)
where we can arrange r, s > 0. The same kind of analysis gives:

Theorem 3.16. There are no nontrivial special Lagrangian sub-
manifolds in C* whose fundamental cubic has a discrete stabilizer which
contains at least an element of order 5.

Remark. From this theorem, the result in Theorem 3.14 follows
immediately, since the irreducibly acting icosahedral subgroup of SO(4)
has elements of order 5.

Next, the general harmonic cubic stabilized by an element of order
4 is
C = Re(rzizs + sz123)

where we can arrange again r, s to be real and nonnegative. The sta-
bilizer of C' is a continuous subgroup if » = 0 or s = 0, the irreducibly
acting octahedral subgroup QT if r = s and the dihedral group Dy in
the rest of the cases, since the element of order 2 that flips the signs of
{z2,x3} belongs to the stabilizer.

We obtain:

Theorem 3.17. There is no nontrivial special Lagrangian 4-fold in
C* whose fundamental cubic has a Dg-symmetry at each point.

For the details of the calculations in the above results see [5].

3.3.3 Discrete symmetry at least Zs

Now we consider those special Lagrangian 4-folds L ¢ C* whose fun-
damental cubic has at least a Zgz-symmetry at each point. We saw in
the proof of Corollary 3.10 that there are two inequivalent orbits that
stabilize an element of order 3. We start with:
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Case 1. (r,s) = (2,0) : The general harmonic cubic fixed by the
47

element g = (BOT I ) in the maximal torus is:
2

C = Re(rz} + 25 + s2(]20]* — 2|21 ]?)),

where r,t,s € C. By rotations in the zi-line and zo-line, we can arrange
that r, s be real and nonnegative. By writing t = u 4 v, u,v € R, the
cubic C becomes:

(%)

C = r(23—3x123) +sw3(ad+a3—207 —222) +u(rs —3z323) +v(x—323xy)

where r,u,v,s € R and r,s > 0.
The next lemma tells us what the full stabilizer of C' is.

Lemma 3.18. The full stabilizer of the harmonic cubic polynomial

(%) is:
1) a continuous subgroup of SO(4), if r =0 or s =u=v =0;

2) the dihedral subgroup Dg generated by the order 3 element g and
the order 2 element that flips the signs of {x2, x4}, if r # 0,v = 0;

3) the dihedral subgroup Dg generated by the order 3 element g and
the order 2 element that flips the signs of {xa, x4}, if r # 0,0 =
0,u = 3s;

4) the order 18 normal subgroup of D3 x D3, if u = v = 0 and
r,s % 0;

5) the cyclic subgroup Zg generated by the order 3 element g if none
of the above relations among the parameters r,s,u,v hold.

Proof. We denoted by G be the stabilizer of the polynomial C,
where r,s > 0. A simple computation shows that G is a continuous
subgroup if and only if r = 0 or u = v = s = 0. Therefore, if » # 0 and
52 4+ u? + v? # 0, the stabilizer G is discrete.

When s = 0, we can make a rotation in the (x3,x4)-plane and sup-
pose also that v = 0. In this case, the stabilizer of C is G, the order 18
normal subgroup of D3 x D3 described as follows: Let the first D3 be
denoted by D31 and suppose it is generated by the rotation a; and the
reflection by, where ai’ =1, b% =1, aibja; = b1. Denote the second Dj
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by D3~ and suppose it is generated by the rotation as and the reflec-
tion bo, where a% =1, b% =1, asbsas = by. Then D3 consists of the
elements

{0/ =1, 65 = a1, 05 = a3, r = by, 1“3' =a1by, 15 = a3b}
and D3~ consists of the elements
{07 =1, 05 =ao, 05 :ag, ry =ba, Ty = agbo, ry :a%bg}.
The SO(4)-stabilizer of the cubic C' is formed by the 18 pair elements:
{(6+ 9'—)’(744‘ rj_)v i,J= 13}

i 7] i
Next, if r # 0 and s # 0, the differential analysis yields the following
cases:

i) If v = 0, the stabilizer G of the cubic C is the dihedral subgroup
D3 generated by the order 3 element g and the order 2 element
that flips the signs of xo and z4.

ii) If v = 0,u = 3s, the stabilizer G of C is also the above dihedral
subgroup Dsg.

iii) In the general case, when none of the above relations among the
parameters 7, s, u, v hold, the stabilizer of C is Zgs.

q.e.d.
In the case of Dg-symmetry we obtain the following partial result:

Proposition 3.19. There is an infinite parameter family of con-
nected special Lagrangian submanifolds in C* such that the fundamental
cubic at each point has a Ds-symmetry and is of the form (x), where
v=0 andr,s #0. This family depends on 2 functions of one variable.

Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C be its fundamental cubic. It follows
that

C = r(w? — 3wiw?) + u(ws — 3wsw?) + 3swz (W3 + w? — 2w? — 2w32),

with » > 0,s > 0 defines a Dg-subbundle F' C P;, of the adapted
coframe bundle P;, — L. In this case, were able to write down the
structure equations that hold on the bundle F, but were unable to
describe completely the family of special Lagrangian submanifolds in
this case. Cartan-K&ahler theorem tells us that the family should depend
on 2 functions of one variables. For more details see [5]. q.e.d.
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Theorem 3.20. Let L be a connected special Lagrangian subman-
ifolds in C* such that its fundamental cubic at each point has a Ds-
symmetry and it is of the form (%), where v = 0,u = 3s and r,s # 0.
Then L is, up to rigid motion, an open subset of the asymptotically
conical special Lagrangian 4-fold given by:

(3.42) Ly = {(a +ib)u| u € &, Re(a + ib)* = ¢},

where ¢ is a real constant and X C S7 is a 3-manifold with the property
that the cone on it is special Lagrangian, with phase i.

Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C be its fundamental cubic. It follows

that

C = r(w} — 3wiws) + 3sw3 (w3 — w? — w2 —wi),

with » > 0,s # 0 defines a Ds-subbundle FF C Pp of the adapted
coframe bundle P, — L.
The structure equations on this bundle are computed to be:

(3.43)

dwi = tiwsg A wy — tawg A w1 — 2t5ws A wa + tgwi A wo
dwy = tyw1 N wo — t1ws A wg + tows A wy + 2t5ws A wy
dws =0
dwy = 6t5w1 A wo + tiws A wy

dr = —3rtqwy + 3rtswe — rtyws + rtowy

ds = —5stiws

dt; = (45% — t3)ws

dty = miwy + maws — titaws + (t3 4 2 4+ s — 9t2)wy

dty = maws + (my — 2r% + 13 +13 + 13 + 15 + 1512 + 5%)wg — t1t3w3

1
+ <t2t3 — 2tyts + 3m2> )

1
dty = mywy — (m3 + 2tats)wa — titsws + <2t3t5 + 1oty — 3m1> Wy

1 1
dt5 = §m2w1 — §m1WQ — t1t5W3 + 2t2t5w4
for some functions mq,ma, m3, my4. Differentiation of these equations

does not lead to new relations among the quantities. The differential
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ideal on the manifold M = P; x R? is involutive, since the Cartan
characters can be computed as s; = 4, s9 = s3 = s4 = 0 and the space
of integral elements at each point is parameterized by the 4 parameters
mai, Mo, M3, 1M4. s )

The structure equations imply d(s5 + t2s75) = 0. Since F and
L8 are conglecteds, it follows that there exists a constant ¢ > 0 so that
s5 + t%s‘g = ¢5. Therefore, there is a function 8, well-defined on L,
that satisfies:

4
5

4 1 4 ™
s5 = c¢5cosdf, s 5t; = c5sin4d, \9]<§.

From the sixth equation of (3.43), it follows that

do

W3 = ——""5-
c(cos40)1

The structure equations imply that w; = wes = w4 = 0 is integrable
and also that ws = 0 defines an integrable 3-plane field on L. The
1-dimensional leaves of the field I'; defined by w; = wy = wyq = 0 are
congruent along I's, the codimension 1 foliation defined by w3 = 0. This
is clear since:

des = —3swsJes, d(Jes) = 3swzes mod {w1,ws,ws}

and ds = 0 mod w3, meaning s is constant along each leaf of I'y. The
above equations imply that the leaves of the I'; foliation are congruent
plane curves of curvature —3s, lying in the complex line (es, Jes).

The form of the structure equations tells us that these examples
must be related to the asymptotically conical special Lagrangian sub-
manifolds, as seen in [1] for the Zs-stabilizer type case of the special
Lagrangian 3-folds.

Suppose that the plane curves which are the leaves of the I'y foliation

are of the form Re z% = c%, where ¢ is a constant and p € R is to be
determined. By dilation, we can take ¢ = 1 and consider the curve given
by z(t) = (14 it)?, in the (es, Jes)-plane. To compute the curvature of
this curve, we use the formula for the curvature in any parametrization
and we get:

/ 7
(3.44) Rt = 2 P g

(%)363 N Jes B p

_ptl
2,
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Since k = —3s, and also using the sixth and the seventh structure
equations in (3.43), we compute that p = 1.

Therefore, the leaves of the I'i-foliation are curves given by the equa-
tion Re z* = ¢, where ¢ is a constant. From the equation of the curva-
ture (3.44), it follows that as ¢t — oo, k — 0, so these curves flatten out,
telling us that they have an asymptote.

Now we study the I's-foliation, whose leaves are 3-manifolds. If we
set 8 =0, i.e., t; = 0 and s = ¢, we obtain a 3-manifold ¥, immersed in
the 7-sphere S7. This is clear since:

d(Jez) = —swie1 — swaeg — swyeq = —sdx,

where z: ¥ — C* is the position vector. Since s is constant on ¥, it
implies that
Jes = —sx + constant,

where we can suppose, by translation, that the constant is 0. Therefore,

T = —% and ¥ is immersed in the 7-sphere of radius %, in the direction
J€3.
The structure equations of the leaves of the w3 = 0 foliation are:
dwi = —tows N w1 — 2tswy A we + t3wi A wo
dwo = tywy N we + towg A wy + 2t5w4 N W mod ws

dwy = 6tswi A wo.
Consider now the following expressions:

1

N =Ss5w1, 1 =1,2,4,
_1 .

qi =58 5t;, 1=2,...,9,
1

p:3_3r7

_2 .
vi=8 5smy, 1 =1,...,4.

The structure equations derived earlier show that

(3.45) dn1 = qam A na + qz3m An2 + 2qsm2 A
dna = qan2 A na + qam A2 + 2g5ma A
dng = 6gsm A n2

4
dgz = vim + vema + <9 +q5— 9QE2>> un
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4
dgz = v + <9 +q5 + a5 +qi + 15¢3 — 2p° +v4) 2

1
+ g(vz — 64495 + 392q3)n4

1
dqs = vam — (v3 + 2q2q5)n2 — 5(’01 — 64395 — 3¢2q4) M4
1

1
dgs = V21— U + 2q2q5M4

dp = —p(3qam — 3q3n2 — q2n4).

Therefore, the metric g = nf + 73 +n3 is well-defined on each leaf of the
I's-foliation. The 6-curves meet the 3-manifold 3 orthogonally, so it is

easy to see that the image of (-3, §) x X is of the form:
(3.46) Ly={zuluey, z€C, Rez?=¢},

where ¢ is a real constant. In order for this to be a special Lagrangian
4-fold, the cone on the image of X should be a special Lagrangian 4-fold.

We shall show now that, indeed, the cone on X is special Lagrangian
with phase i. The cone on ¥ is parameterized by:

(r,z) = rz, r € RT, z € %3,

The tangent space to C'(X) has a basis formed by the vectors:

I R B S}
1_83:1’ 2_81’2’ 4_8334’ 3_8y3 '

w =dx1 Ady; + drs A dys + dxs A dys + drg A dyy,

Since

it is clear that w [¢(m)= 0, so the cone is Lagrangian. Also, ) =
dzy Ndzo N\ dzs A dzg and we can easily compute that

Im Q ‘C(Z): dxy N dxo A dys N dxy,

which represents the volume form on the cone, and Re Q |¢()= 0.
Therefore, C(X) is special Lagrangian with phase i. Then, it is well-
known [12] that (3.46) is a special Lagrangian 4-fold.

Theorem 3.21. Let L be a connected special Lagrangian subman-
ifolds in C* such that its fundamental cubic at each point has a G-
symmetry, where G is the order 18 normal subgroup of D3 x Ds. Then
L is congruent to the product of two holomorphic curves in C?.
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Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C be its fundamental cubic. Then

C = r(w? — 3wi1wd) + v(w3 — Bwaw?),

with r > 0,v > 0,7 # v defines a G-subbundle F' C Pj, of the adapted
coframe bundle P; — L, where G is the order 18 normal subgroup of
D3 X D3.

The structure equations on the subbundle F' are computed to be:

(3.47) dwi = tzw1 A wa, dwy = tawi A wo
dws = tiws A wy, dwg = tows N wy
dr = —3rtywi + 3rtzws
dv = —3vtows + 3vtiwy
dty = uiws + (15 + 13 — 2v* + ug)wy
dto = ugws — Uwy
dts = uzwy + (13 + 15 — 2r? + ug)wo

dty = ugwi — uswy

for some functions w1, ug, us, U4.

From the above structure equations, we can see that wy = wy = 0
and w3 = wy = 0 define integrable 2-plane fields on L. The structure
equations also show that the leaves of the 2-plane field I'; defined by
w3 = wy = 0 are congruent along I's, the codimension 2 foliation defined
by wi = we = 0. Also, the 2-dimensional leaves of the 2-plane field 'y
are congruent along I';.

Since d(ejwi + eaws) = 0 and d(esws + eqwyq) = 0, it follows that
e1wi+eows = dmy and esws+eqwy = dme, where the projections 71 : L —
>1 and my: L — Y5 are well-defined. Therefore, x = m + w5 + const
and L is the sum of two surfaces: L = Y1 x Y.

Since d(e; A ez A Jeyx A Jeg) = 0, it follows that ¥ lies in the
complex plane (e1, ez, Jei, Jes). Also, 3o lies in the complex plane
(e3,e4,Jes, Jey).

Because L is special Lagrangian, both surfaces ¥; and X9 should
be special Lagrangian 2-folds in C?. It is well-known then that these
surfaces should be holomorphic curves with respect to some complex
structure on C2. More explicitly, if 1 C C2, with complex coordinates
{z1 = 1 4+ iy1,22 = x2 + iy}, then ¥; is a holomorphic curve with
respect to the complex coordinates {u; = 1 — ize,v1 = y1 + iy2}.
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If ¥5 C C?, with standard complex coordinates {z3 = 3 + iy, 24 =
x4 + 1ys}, then Yo is a holomorphic curve with respect to the complex
coordinates {ug = x3 — ix4,v2 = y3 + iys}. q.e.d.

In the next case of Zs-symmetry we were unable to describe com-
pletely the SL 4-folds and therefore we have only a partial result.

Proposition 3.22. There is an infinite parameter family of con-
nected special Lagrangian submanifolds in C* such that the fundamental
cubic at each point has a Zs-symmetry and is of the form (x). The
family depends on 4 functions of one variable and the elements of this
family are foliated by non-congruent minimal Legendrian surfaces in the
direction {w1,ws} and by congruent holomorphic curves in the direction

{wg,W4}.

Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C' be its fundamental cubic. Then

C = r(w} — 3wiw?) + 3s(w? + w? — 2wl — 2wd)ws

+ u(wd — 3waw?) + v(wi — 3wiwy)

with 7 > 0 defines a Zg-subbundle F' C P of the adapted coframe
bundle P;, — L. The differential analysis shows that the structure
equations on the bundle F' are:

3.48
(dwl ): t3wi A wy, dwo = tqwi A ws, dws = tiwg A wy, dwy = tows A wy,
dr = —3rtqwi + 3rtsws + 2rstows + 2rstiwy
ds = [—svty + s(7s + u)to]ws + s[(3s — u)t; — vtg]wy
du = [—11svt; + (30 + 3u® 4 65 — su)ty + tews
+ [(11su — 3u? — 6s% — 31)2)151 — suty — ts)wa
dv = tsws + tews
dty = [v(t? + 13 + 1) — Sstita]ws + [(u — 8)(t7 + 13 + 1)]wy
dty = —[(u+58)(t2 + 15 + 1) — 8stT]ws + v(t] + t3 + 1)ws
dty = —maowy + [4s% (12 + 13 + 1) + 13 + 17 — 21 + my)wo
+ 2stotsws + 2s5t1t3wy
dty = miwy + maowsg + 2stotsws + 28t tawy
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dts = [ — my + 3t1(30suv — 4750 — 3uv — 30°%)
+ 3t3(=75%v + 10suv — 3v® — 3u?v)
+ (255 — Tu)tite + 60sv>t1ty + (Tu — 3s)tats
— Tutatg — Tutits — 18520 — 6uv + 24suv — 6113]w3
+ [ms + (3s — w)tits — viats + (s — w)tats + viitelwy
dtg = msws + Mmywy

for some functions my, mo, ms, my.

The Cartan-Kéahler analysis tells us that the solution should depend
on 4 functions of 1 variable. From the structure equations, we can see
that w3 = wy = 0 and w; = wy = 0 define integrable 2-plane fields on
L. Let I'1 be the w; = wy = 0 foliation and I'y be the wg = wyg = 0
foliation. The structure equations of the foliation I'y show that the
leaves are congruent and that the metric g1 = w3 + w7 is well-defined
on the leaf space of the I'; foliation. It is easy to see that the leaves of
the I's foliation are non-congruent.

Notice that if we denote A% = 4s2(t? + t3 + 1), then we get that
% = 25(tows + tiwy). We see that A is constant on each leaf of the T’y
foliation. We compute that:

(3.49) d(Awl) = t3wi A (AWQ) = (t3w1 + t4w2) A (Awg)
d(AcL)g) = —tyqwa A (Awl) = —(tgwl + t4cL)2) A (Awl)

and the metric go = (Awi)? + (Aws)? is well-defined on the leaf space
of the I'y foliation.

Computations also show that d(r%A%wl) = 0 and d(r%A%wz) = 0.
These implly tglat there are functions x1,z9 on L such that ’I”%A%wl =
dxy and r3A3ws = dxy. This gives x1,z2 up to additive constants
and x1 + iz9 is holomorphic with respect to the complex structure that
{w1,ws} define on the leaf space of T'y.

The above imply that the metric

2
A\ 3
go = (7‘) (dz? + dxl) = F(x1, x2)(dx? + dx3),
on the I's leaf space has Gauss curvature:

k:1—2<£)2:1—w.
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We obtain a differential equation for the function F(z1,z2), given by:

1 2

(3.50) §A(ln F)= i F.

We used here the fact that a metric ds? = e?“(dz? +dy?) is computed to
have the Gauss curvature K = —Aue 2", In our case, take u = %lnF
and (3.50) follows. The function u satisfies the differential equation
Au = e** — 2¢4 (Tzitzeica equation), which is completely integrable
by means of inverse scattering method [16]. This is the differential
equation satisfied by the curvature of the metric of a minimal Legendrian
immersion in S°(1), invariant under S'-action, as shown by Mark Haskin
in [4], p. 14. Sharipov [16] shows that the minimal immersion satisfying
Tzitzeica equation are minimal tori which are complexly normal in S°.
Therefore, L is foliated by non-congruent minimal Legendrian surfaces
in the direction {w;,ws} and by congruent holomorphic curves in the
direction {ws,w4}. We do not have a complete description of the family
yet.

We move now to analyze the other orbit that stabilizes an element
of order 3.

Case 2. (r,s) = (%,3): This case is equivalent to the (r,s) = (3, 1)
case, when the element in the maximal torus that stabilizes C' is

g
g:<e m)7
0 e 3

of order 3. The general harmonic cubic fixed by this element is
C = Re(agzi’ + 3a2z%,22 + 3alzlz§ + aozg’), ap, a1, as,a3 € C.

We notice that the commutator of ¢ is larger than the maximal torus in
this case. The unitary group U(2) commutes with g and therefore we
can use also its action to get rid of certain parameters, more precisely
to make ag = 0 and aj,a2 € R. So, the general cubic stabilized by g
will look like:

() C = u(a} - 32123) + v(32iws — 23)

+ 7”[(1‘% — :B%).%’g — 2z m04) + s[(x% — xi):ﬁl — 2wowaxy],

where u,v,r, s € R.
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Lemma 3.23. The full stabilizer of the polynomial given by (xx),
where r, s, u,v € R is:

1) a continuous subgroup of SO(4), ifr=s=0oru=v=r=0 or
u=v=s=0;

2) the dihedral subgroup Dg generated by the order 6 element a =
4arg
(e 50 ) and the element of order 2 that flips the signs of {xa,

0 e3
x4}, if r=v=0;
3) the dihedral subgroup Dg generated by the order 3 element g and
the order 2 element that flips the signs of {xa,x4}, if s =v = 0;

4) the cyclic subgroup Zs generated by the order 3 element g if none
of the above relations among the parameters r, s, u,v hold.

Proof. We denoted by G be the stabilizer of the polynomial C. A
simple computation shows that G is a continuous subgroup if and only
ifr=s=0oru=v=r=0oru=v=s5=0.

Doing the differential analysis in the discrete case, we obtain the
following cases where the stabilizer becomes larger than Zs:

i) r=0. By making a rotation, if necessary, of angle 6 = % arctan(—=)
in the (x1,z2)-plane and of angle —20 in the (z3,z4)-plane, we can
suppose that v = 0 also.

The stabilizer of C' for r = v = 0 is seen to be the dihedral subgroup

47
D¢ generated by the order 6 element a = <€T 0 > and the element of

0 e%i
order 2 that flips the signs of {x2,x4}. This case of symmetry at least
Zg was already studied in Section 3.3.2 and it did not yield any families

of special Lagrangian 4-folds.

ii) s = 0. In this case, we can arrange that v = 0 also and the
stabilizer is computed to be the dihedral group Ds.

iii) In the general case, when none of the above relations among
the parameters r, s, u, v hold, the stabilizer of C' is computed to be Zg
generated by the element g. q.e.d.

Theorem 3.24. Let L be a connected special Lagrangian subman-
ifold in C* such that its fundamental cubic at each point has a Zs-
symmetry and it is of the form (xx). Then L is an I-special Lagrangian
J-holomorphic surface in C*, where {I,J, K} is the hyper-Kdhler stuc-
ture on C*.
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Proof. Let L be a special Lagrangian 4-fold that satisfies the hy-
potheses of the theorem and let C be its fundamental cubic. From
Lemma 3.23, the equation

C = u(w} — 3w1w3) + v(Bwiws — W)

+ r[(w? — wd)ws — 2wiwawy]) + s[(wWE — WIw — 2wowswa),
with 7, s, u, v € R defines a Zs-subbundle F' C Py, of the adapted coframe
bundle P;, — L.

On the subbundle F', the following identities hold:

(3.51)

(Bz])
UW] + vwg + rw3 Vw1 — UW9 — w4 Twi + Sw3  —Twa — Swy
VW1 —UW —TwWqg —UW1 — VW2 —rwg —rwy — Swqg —Trwy — SWs
rwi + sws —TwWo — SWwy Sw1 —Sw2
—TwWo — Swy —rwi — SwWs —SWw9o —Sw1

The Cartan-Kéahler analysis yields the following relations between
the a;;’s:
a31 —aye =0 and ags + ay = 0.

We consider the ideal I;, on the coframe bundle, spanned by the
1-forms (3.51) and the two 1-forms as; — ayo and ass + a4q. The inde-
pendence condition is given by wi A wy A w3 Awyg # 0 and the tableau
matrix for the structure equations is given by:

ap Qa2 as e
Qy —aq (671 —Qa3
a3 (%] (675 (673
Qq  —Qa3 (873 —Qs
(675 Qg —3S7T6 —387T5

ag —an —3sTy  3STg
where

™1 :dr, 7T2:ds, 7T3:du, 7r4:dv,

T5 = OQi41, Te = (42, T7 = (43, T8 = (2]

a1 = —ms + 3rmg + vy
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Qg — —Ty4 — 37’7['5 - 3u7r8

ag = —m1 +vms + (25 — u)mg

ay = —(2s + u)ms — vwg — T — 2r7My
a5 = —27“7T2 — Tg

g = —2r7ms — 28T7 + STy,

From the above tableau, we compute the reduced Cartan characters as
sy = 6,5, = 2,55 = s), = 0. The integral elements of the system at each
point is shown to form a space of dimension 10 = s} + 2s + 3s5 + 45
and therefore, by Cartan’s Test, the system [; is involutive.

The form of the tableau resembles the tableau for the structure
equations of a complex surface with complex structure given by ~v; =
w1 + twy and v = w3 + twy. We will show that this is actually the
case. The characteristic variety of the ideal is formed by 2 complex
lines spanned by {v1,72} and their conjugates.

The first derived system of I; is generated by the rank 6 Pfaffian
system Iy spanned by the six 1-forms:

(3.52) 01 = Bi1 + Po2, 0o = B33 + Baa, 03 = Ba1 — B32
04 = P31 + Pa2, 05 = az1 — au2, 06 = aza + 1.

This system is Frobenius and defines a foliation of dimension 10 on the
coframe bundle. The integral manifold of our original system will be a
submanifold of the maximal integral manifold of the derived system Is.
Therefore, we will adapt frames and restrict to the first derived system,
looking for integral manifolds of this system.

We notice that, when restricted to the first derived system, the con-
nection matrix takes values in the Lie algebra of a 10-dimensional sub-
group of SU(4). This subgroup can be shown to be Sp(2). The system
I, restricts to the Sp(2)-coframe bundle, of dimension 18. The canonical
form on this bundle has components &; = w; + in; and the 1-forms

{wi, mi, Br1, B33, P21, Ba1, Bar, Bas, a1, 31, a1, g}

form a basis for the space of 1-forms on this coframe bundle P = C* x
Sp(2). On the integral manifolds, n; = 0 for i = 1...4.

Now, the symplectic group Sp(2) leaves invariant 3 symplectic 2-
forms {(1,¢2,(3}. One of them is the Ké&hler form of the standard

269
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complex structure I on RE.

Cl:%(51/\§1+§2/\§2+53/\53+§4/\54)

=wi An tw2 Ang+ w3 Ang+ws Ay
and the other 2-forms are computed to be:

G=wi Awa+w3 Awsg —n1 A2 — 103 A4
GG=w1Am—wa Am+wsAns—ws Ans.

Let I,.J, K be the complex structures on R® corresponding to left
multiplication by the elementary quaternions ¢,j and k. Then the
standard metric g = Z?‘:l(wf + n?) on R® is Kéhler with respect to
each I, J, K, with Kéahler form (1,{s and (3, respectively. The forms
Y1 = Qo+ i3, Y2 = (1 +1i(3, Y3 = (1 + i¢2 are the holomorphic sym-
plectic forms on C*, associated to the complex structures I,.J and K
respectively. The standard complex structure on R® is considered to
be I, given by the complex 1-forms: w; +in;, j = 1...4. The 4-forms
Q, = %%‘2: i = 1...3 are the holomorphic volume forms on C*, associ-
ated to the complex structures I, J and K, respectively, with € being
the usual holomorphic volume form. On the integral manifolds of I,
(1 = (¢ =0and (o = w1 Aws + ws A wy is the Kéahler form for the
complex structure J given by 71 = w1 + iwe and y2 = w3 + iwy.

We will now show that the integral manifold of the ideal generated
by the 2-forms (; and (3 are complex manifolds with respect to the
complex structure J. Let (z1, 22, 23, 24) be the complex coordinates on
R® that are holomorphic for the complex structure J. Then:

C1+1iC3=dz1 Ndza +dzg Ndzy

Let I be the differential ideal generated by the complex 1-form o =
(1 + i¢3. We use the Cartan-Kéahler analysis [1] to compute the Cartan
characters as s1 = so = 2 and s3 = s4 = 0. The space of 2-dimensional
integral elements over a point has dimension 6 = s1 + 2s9 + 3s3 + 454
and by Cartan’s Test, the system is involutive. The maximal integral
manifolds of this ideal are given by 2 complex linear equations, i.e., they
are J-holomorphic surfaces in C*.

An integral manifold of the derived system I is an integral manifold
of the system (1 = (3 = 0 and an integral manifold of the system (; =
(3 = 0 is an integral manifold of the derived system. To summarize, the
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integral manifolds ¥ of our original system are J-holomorphic surfaces
in C*. They are I-special Lagrangian 4-folds, because

1
(1 |E: 0 and 5 Im(Q%) ’2: C:g & |E: 0.
q.e.d.

Theorem 3.25. Let L be a connected special Lagrangian subman-
ifold in C* such that its fundamental cubic at each point has a Ds-
symmetry and it is of the form (x) with s = v = 0. Then L is a ruled
I-special Lagrangian J-holomorphic surface in C*.

Proof. The analysis here is similar to the one in the previous result.
It can be shown that the solutions are again I-special Lagrangian J-
holomorphic surfaces. Moreover, the structure equations show that the
holomorphic surfaces are foliated by planes in the {es,e4}-direction.
The conclusion is that the solutions are ruled I-special Lagrangian J-
holomorphic surfaces. q.e.d.

We conclude this paper with the following:

Open Problem. It remains to study the general case when the
symmetry of the fundamental cubic is at least a Zs. This is the most
complicated case since the space of fixed harmonic cubics involves a
large number of parameters.
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